WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |

Мы начали эффективно использовать ауксотрофные штаммы метилотрофных бактерий для включения атомов стабильных изотопов дейтерия 2H и углерода 13C в молекулы аминокислот ещё 10 лет тому назад, работая в группе академика РАМН В.И. Швеца на кафедре биотехнологии Московской государственной академии тонкой химической технологии им. М.В. Ломоносова. Для этих целей мы использовали биологическую конверсию дешёвых низкомолекулярных меченых субстратов - (13C)метанола, (2Н)метанола и тяжёлой воды 2H2O в клетках метилотрофов в молекулы дорогостоящих меченых БАС [111-113]. Традиционным подходом при этом было выращивание соответствующих штаммов-продуцентов аминокислот, устойчивых к росту на средах, содержащих стабильные изотопы водорода, углерода, азота и др. В работах [114, 115] сообщается о включение атомов изотопа углерода 13C в молекулы аминокислот (уровни включения стабильных изотопов в молекулах варьируют от 30% для L-[13C]лейцина до 90% для L-[13C]фенилаланина) за счёт использования ауксотрофных по L-изолейцину бактерий Methylobacillus flagellatum.

 

Наши исследования показали, что [13C]метанол в отличие от тяжёлой воды не оказывает существенного биостатического эффекта на ростовые и биосинтетические характеристики метилотрофов [116], поэтому данный подход можно эффективно использовать для введения в молекулы синтезируемых БАС двойной изотопной метки (например, введение изотопа углерода 13C в молекулы на фоне максимальных концентраций тяжёлой воды в ростовых средах). В работе [117] нами были получены [2H]- и [13C]аминокислоты с разными уровнями изотопной обогащённости при росте ауксотрофного по L-лейцину штамма факультативных метилотрофных бактерий Brevibacterium methylicum и ауксотрофного по L-изолейцину штамма облигатных метилотрофных бактерий Methylobacillus flagellatum на минимальных средах с (13C)метанолом, (2Н)метанолом и тяжёлой водой 2H2O. [13C]- и [2Н]аминокислоты разного уровня изотопной замещённости выделяли как из культуральных жидкостей, полученных после выращивания бактерий на средах с соответствующими изотопномечеными субстратами, так из гидролизатов белков биомассы.

 

Биосинтетически полученные нами молекулы [2H]- и [13С]аминокислот представляли собой смеси, в которых присутствовали изотопнозамещённые формы молекул, различающиеся количеством атомов водорода и углерода, замещённых на дейтерий 2H и изотоп углерода 13C. При этом распределение зависело как от общего включения изотопа в молекулу, так и от способа их получения. Наши исследования показали, что в условиях ауксотрофности по лейцину уровень изотопного обогащения молекулы лейцина, а также метаболически связанных с ним молекул аминокислот немного ниже, чем для других молекул аминокислот, вероятно, за счёт сохранения минорных путей метаболизма, связанных с биосинтезом данных аминокислот de novo. При выращивании B. methylicum на среде, содержащей 98% тяжёлую воду 2H2O и немеченый L-лейцин, уровни включения дейтерия в молекулы индивидуальных аминокислот культуральной жидкости составил 51% для молекулы лейцина/изолейцина, 58,8% для молекулы валина, в то время как уровни изотопного включения для молекулы аланина составили 77,5%, а для молекулы фенилаланина -75%.

 

Аналогичная корреляция наблюдается и в молекулах аминокислот белковых гидролизатов. Уровни включения атомов дейтерия 2H и углерода 13C в молекулы метаболически связанных аминокислот в пределах одинаковых концентраций меченых субстратов, обнаружили определённую коррелляцию: уровни изотопного включения для молекул валина и лейцина (семейство пирувата), фенилаланина и тирозина (семейство ароматических аминокислот) коррелировали. Уровни изотопного включения для молекул глицина и серина (семейство серина), аспарагиновой кислоты и лизина (семейство аспарагина) также имели близкие величины.

 

Важным результатом являются высокие уровни включения атомов стабильных изотопов 2Н и 13C в молекулы полученных аминокислот. В настоящее время исследования по изучению биотехнологического потенциала метилотрофных бактерий для направленного синтеза изотопномеченых аминокислот и других БАС продолжаются как на кафедре биотехнологии МГАТХТ им. М.В. Ломоносова, так и в ГНИИ ГЕНЕТИКА.

 

Генно-инженерные методы включения атомов стабильных изотопов в молекулы аминокислот и белков.

 

Осуществлять направленное биосинтетическое включение атомов стабильных изотопов в молекулы аминокислот и белков удобно за счёт использования векторов экспрессии нужных генов, ответственных за биосинтез того или иного интересующего исследователей белка. Оправдано и целесообразно использование для этих целей векторов экспрессии на основе плазмидной ДНК бактерии E. coli, например, вектор экспрессии Т4 лизоцима, включающий в своем составе плазмиду pHSe5 [118]. В результате использования этого вектора экспрессии, были получены миллиграммовые количества Т4-лизоцима, селективно меченного стабильными изотопами азота-15N и углерода 13C. Включение атомов стабильных изотопов в молекулы достигалось за счет роста генного конструкта E. coli на средах, содержащих [15N]- или [13C]аминокислоты. Метод также может применяться для получения индивидуальных меченых белков, экспрессия которых происходит в системах, отличных от E. coli, например, системы экспрессии на основе клеток насекомых или млекопитающих [119].

 

Другие микробные системы, в которых белки экспрессируются с высокими выходами, также могут быть пригодны для включения атомов стабильных изотопов в молекулы. К ним относятся такие хорошо изученные биологические объекты, как дрожжи, бактерии и бактериофаги. Так, за счёт использования вышеперечисленных микробных объектов в качестве векторов экспрессии были получены препаративные количества индивидуальных очищенных [15N]белков: нуклеаза стафилококка [120], интерлейкин 1b [121], белок репрессор фага P22C2 [122], тиредоксин E. coli [123], гемоглобин [124], a-протеаза [125], ингибитор субтилизина [126], репрессор фага l [127], и белок человеческого фактора роста N-ras P21 [128].

 

В работе [129] описан метод включения атомов дейтерия в молекулы индивидуальных белков с использованием вектора экспрессии на основе штамма облигатных метилотрофных бактерий Methylobacillus flagellatum. Метод состоит в том, что в метилотрофах клонируют структурный ген исследуемого белка. Таким методом можно в будущем получать, например, [2H]b-интерфероны, хорошо экспрессируемые в клетках метилотрофов, либо другие интересующие исследователей белки. Метод также позволяет вводить в молекулы аминокислот и белков другие атомы стабильных изотопов, например, изотоп углерода 13C. В связи с этим следует подчеркнуть, что основным недостатком при использовании полученных данным методом [13C]аминокислот в ЯМР-исследованиях являются всё же недостаточно высокие уровни изотопного обогащения аминокислот, что обусловливает усложнение спектров ЯМР за счет 12C- 13C-спин-спинового взаимодействия между близлежащими атомами углерода в молекуле [130]. Так как мультиквантовые резонансы близлежащих атомов углерода в молекуле являются основным препятствием для интерпретации спектров ЯМР, необходимо применять усовершенствованные методы включения атома изотопа углерода 13C в молекулы аминокислот, позволяющие лимитировать процесс разбавления изотопной метки. Так, в последнее время были генетически сконструированы новые штаммы бактерий, которые несут мутации по генам метаболизма определенного круга предшественников этих аминокислот [131]. Это позволяет избежать разбавления изотопной метки при росте микроорганизма на среде, содержащей те или иные меченые субстраты за счет ингибирования биосинтеза аминокислот de novo у данных мутантных штаммов бактерий.

 

При выборе определенных мутаций по генам метаболизма стремятся удовлетворить как миниум двум условиям для нормального функционирования подобных генетически сконструированных систем, чтобы, во-первых, по возможности снизить деградацию изотопной метки или ее разбавление в процессе внутриклеточного синтеза немеченых предшественников de novo и во-вторых, свести к минимуму процессы перестройки меченых положений углеродного скелета молекулы за счет биосинтеза одинаковых интермедиантов, образующихся по сопряжённым путям биосинтеза. Данная стратегия реализована в работе [132], где сообщается о получении двух генетически сконструированных штаммов бактерий, обозначенных как E. coli DL10 и E. coli DL11, которые несли геномные делеции, исключающие обмен атомов углерода между интермедиаторами в процессе гликолиза и в цикле трикарбоновых кислот.

 

За счёт использования генетически сконструированных штаммов удалось включить атомы изотопа углерода 13C в молекулы аминокислот с уровнями изотопного обогащения до 95%. Ферменты у штамма E. coli DL10 были инактивированы за счёт мутаций, вследствие чего он ассимилировал в качестве источников углерода и энергии сукцинат и ацетат из ростовой среды, а [1-13C]лактат добавляли в ростовую среду для компенсации метаболических потребностей клетки и для введения атомов изотопа углерода 13C в молекулы аминокислот, синтезируемых в процессе гликолиза.

 

Другой штамм бактерий E. coli DL11 мог утилизировать немеченую глюкозу в качестве источников углерода и энергии по гликолитическому пути ассимиляции углерода, в то время как [1,4-13C]cукцинат и [1-13C]ацетат добавляли в ростовую среду для того, чтобы стимулировать биосинтез [13C]аминокислот, образующихся по циклу трикарбоновых кислот. Кроме того, в этом случае было необходимо ввести в бактериальный геном дополнительную мутацию, связанную c геном a-кетоглутаратдегидрогеназы, чтобы минимизировать процесс деградации метки в цикле трикарбоновых кислот.

 

Выделение изотопномеченых молекул аминокислот из белковых гидролизатов микроорганизмов.

 

 

Биомасса микроорганизмов, выращенных на средах, содержащих стабильные изотопы, является ценным источником различных изотопномеченых БАС, в том числе аминокислот. При этом наиболее распространённым и традиционным методом препаративного выделения аминокислот из клеточной биомассы является её гидролиз с использованием ферментативных или химических методов и последующая ионообменная хроматография на катионо- и анионообменных смолах (дауэкс, амберлит, пермутит, аминекс, дуолит и др.) [133].

 

Большое значение при проведении гидролиза белка имеет выбор того или иного гидролизирующего агента, который определяется целью исследования. Ферментативное расщепление протеолитическими ферментами может протекать ступенчато с концов молекулы (экзопептидазами) или путём расщепления специфических отдельных пептидных связей полипептидной цепи (эндопептидазами), причём специфичность зависит от конфигурации, аминокислотной последовательности и конформации белка [134]. Для селективного химического расщепления белков разработано очень много методов [135], среди которых имеется несколько методов расщепления по a-углеродному атому (например, через остатки дегидроаланина).

 

Щёлочи и кислоты обладают высокой гидролизующей способностью и поэтому их использование приводит к разрушению некоторых аминокислот и к изотопному обмену в триптофане, тирозине и гистидине и в некоторых других аминокислотах. В условиях щелочного гидролиза (4 н. Ba(OH)2 или NaOH, 24 ч, 1100) реакций изотопного обмена водорода на дейтерий практически не наблюдается (исключением является протон (дейтерон) у атома С2’ гистидина) [136]. Существенным недостатком щелочного гидролиза, лимитирующим его использование, является значительная рацемизация аминокислот. Поэтому для препаративных целей щелочной гидролиз используется крайне редко, в то время как кислотный - очень широко.

 

Кислотный гидролиз в стандартных условиях (6 н. НCl или 8 н. Н2SO4, 24 ч, 1100), как известно, приводит к полному разрушению триптофана и частичному разрушению серина, треонина и некоторых других аминокислот [137]. Добавление в реакционную среду фенола [138], тиогликолевой кислоты [139], b-меркаптоэтанола [140], позволяет сохранить до 80-85% триптофана. Кроме этого, в условиях кислотного гидролиза с высокой скоростью протекает изотопный обмен ароматических протонов (дейтеронов) в молекулах триптофана, тирозина и гистидина [141], а также протонов (дейтеронов) при атоме С3 аспарагиновой и С4 глутаминовой кислот [142]. Поэтому для получения реальных данных о биосинтетическом включении дейтерия в белок рекомендуется проводить кислотный гидролиз в присутствии дейтерированных реагентов. Этим способом могут быть выделены и анализированы с использованием ионообменной хроматографии большинство молекул аминокислот в составе гидролизатов белка. При помощи ионообменной хроматографии были препаративно выделены [2H], [13C]- и [15N]аминокислоты из белковых гидролизатов разных природных источников с выходами индивидуальных аминокислот от 77% до 95% и с уровнями изотопного включения, превышающими 95% [143].

 

Метод выделения молекул аминокислот из гидролизатов биомассы, будучи широко применяем на практике часто требует использования вредных буферных растворов (ацетат, формиат, пиридин и др.), нескольких колонок с последующей рехроматографией для полного выделения чистых аминокислот из гидролизатов биомассы.

 

Условия ионообменного разделения молекул дейтерий-меченных аминокислот из гидролизатов суммарных белков биомассы микроводоросли Scenedesmus obliquus, состав элюирующих растворителей, время проведения хроматографического анализа и др, были исследованы в работе [144]. Уровни изотопного включения атомов дейтерия в молекулы аминокислот, выделенные из гидролизатов белков Scenedesmus obliquus составили более 98%. Вследствие протекания реакций обратного изотопного (1Н-2Н)-обмена с протонированным растворителем в ходе элюирования молекул дейтеро-аминокислот с сорбента, протоны в b-положении аспарагиновой кислоты и g-положении глутаминовой кислоты были обогащены атомами дейтерия на 90%, т. е. ниже, чем для других молекул аминокислот. Подвижные атомы дейтерия в a-положении имидазольного кольца молекулы гистидина и атомы дейтерия при гетероатоме азота в индольном кольце триптофана также легко обменивались на протоны в составе водных растворителей при выделении аминокислот.

 

Молекулы [13C]аминокислот были выделены из гидролизатов суммарных белков биомассы штамма метаногенных бактерий Methanobacterium espanolae при росте бактерий на [1-13C]- и [2-13C]ацетате с уровнями включения атомов изотопа углерода-13 в молекулы аминокислот до 90% [145]. Согласно цитируемым там данным, менее 2% случайной изотопной метки в молекулах аминокислот были распределены между атомами углерода в позициях, происходящих из 13C карбоксильной или метильной группы ацетата и еще меньший процент включения метки детектировался в положениях углеродного скелета молекул, образованных из 13СО2.

 

Pages:     | 1 | 2 || 4 | 5 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.