WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 |

Аналогичная закономерность в уровнях включения 13С в молекулы аминокислот, связанных с ауксотрофным метаболизмом, проявляется при выращивании L-изолейцинзависимого штамма M. flagellatum на среде с 1% (13С)метанолом. Как видно из табл. 2, в отличие от наблюдаемого для [13С]фенилаланина (уровень изотопного включения - 95.0%), уровни включения изотопа 13С в молекулы лейцина/изолейцина, аланина и валина составили 38.0; 35.0; 50.0% соответственно. Уровень изотопного включения для [13C]глицина (60%) хотя и выше, чем для трёх последних аминокислот, но намного ниже, чем для фенилаланина.

Суммируя полученные данные по уровням включения 2Н-и 13С в молекулы секретируемых аминокислот, можно сделать вывод о сохранении минорных путей метаболизма, связанных с биосинтезом лейцина и метаболически родственных с ним аминокислот de novo. Другим логическим объяснением наблюдаемого эффекта, если принять во внимание происхождение лейцина и изолейцина по различным путям биосинтеза, может быть ассимиляция клеткой немеченого лейцина из среды на фоне биосинтеза меченого изолейцина de novo. Учитывая данные эффекты следует подчеркнуть, что использование ауксотрофных форм микроорганизмов для получения изотопномеченых аминокислот не оправдывает себя практически из-за множественного включения изотопов в молекулы. Напротив, использование для этих целей прототрофных форм микроорганизмов кажется более перспективным.

Общие принципы изучения уровней изотопного включения в молекулы аминокислот при данном способе введения метки были продемонстрированы на примере анализа сложных мультикомпонентных смесей, полученных после гидролиза суммарных белков биомассы метилотрофных бактерий, а также индивидуального белка – бактериородопсина, выполняющего роль АТФ-зависимой транслоказы в клетках галофильной бактерии Halobacterium halobium. Как видно из рис. 6, до десяти аминокислот могут быть идентифицированы в гидролизате белка B. methylicum по пикам молекулярных ионов метиловых эфиров их N-Dns-производных аминокислот.

Как и в случае с секретируемыми аминокислотами, пики М+. соответствовали смесям изотопнозамещённых форм аминокислот. Для лизина и тирозина пики М+. соответствовали метиловым эфирам ди-производных аминокислот - α, ε-ди-Dns-лизину (с М+. при m/z 631.0) и О, N-ди-Dns-тирозину (с М+. при m/z 663.9). Уровни изотопного включения дейтерия в молекулы аминокислот при содержании 2Н2O в ростовой среде 49% варьируют от 25.6% для тирозина до 45.0% для аланина (рис. 6 б и табл. 2). В молекулах глицина, валина, фенилаланина, серина, лизина, аспарагиновой и глутаминовой кислот они находятся в пределах 35 - 40%. Что касается других аминокислот, не детектируемых данным методом, очевидно, что уровни изотопного включения в них приблизительно такие же. Это подтверждается данными по разделению белковых гидролизатов метилотрофных бактерий методами обращённо-фазовой ВЭЖХ в виде N-Cbz-производных аминокислот или метиловых эфиров их N-Dns-производных аминокислот и ионнообменной хроматографии, где детектируется уже 15 аминокислот (см., например, рис. 7).

Полученные данные свидетельствуют о возможности достижения максимальных уровней включения стабильных изотопов 2Н и 13С в аминокислотные остатки суммарных белков биомассы (за исключением лейцина/изолейцина и валина, сниженные уровни включения для которых объясняются эффектом ауксотрофности по L-лейцину и по L-изолейцину). Например, в случае с дейтерированными аминокислотами полного замещения на стабильные изотопы удалось достичь за счет использования в качестве источника дейтерия 98% 2Н2О (табл. 2). Как видно из табл. 2, при росте B. methylicum на среде с 98% 2Н2О, уровни включения дейтерия в остатки глицина, аланина, фенилаланина и тирозина составляют 90.0; 97.5; 95.0 и 92.8%. В экспериментах по включению изотопа 13С в суммарные белки биомассы за счёт утилизации (13С)метанола метилотрофными бактериями M. flagellatum также наблюдались высокие уровни изотопного включения в глицине (90%), аланине (95.0%) и фенилаланине (80.5%) (табл. 2). Как и в случае с секретируемыми аминокислотами, сниженные уровни включения стабильных изотопов в лейцине/изолейцине (49%), а также в метаболически связанных с ним аминокислотах в этих условиях могут быть объяснены эффектом ауксотрофности штамма по L-изолейцину, который добавляли в ростовую среду в немеченом виде.

Во всех экспериментах по включению стабильных изотопов в молекулы аминокислот уровни включения 2Н и 13С в метаболически связанные аминокислоты обнаружили определённую коррелляцию. Так, уровни изотопного включения для валина и лейцина (семейство пирувата), фенилаланина и тирозина (семейство ароматических аминокислот) коррелируют (см. табл. 2). Уровни изотопного включения для глицина и серина (семейство серина), аспарагиновой кислоты и в лизина (семейство аспарагина) также имеют близкие величины. Из данных табл. 2 видно, что уровни изотопного включения секретируемых аминокислот и соответствующих аминокислотных остатков суммарного белка при выращивании бактерий на средах с одинаковым изотопным насыщением, в целом, также коррелируют. Причина некоторых наблюдаемых расхождений в уровнях включения изотопов в молекулы аминокислот до конца не изучена.

Данный биосинтетический подход показал хорошие результаты по изучению введения дейтериевой метки в молекулу бактериородопсина, выращенного на среде, содержащей L-[2,3,4,5,6-2Н]фенилаланин, L-[3,5-2Н]тирозин и L-[2,4,5,6,7-2Н]триптофан (рис. 8). Как видно из рис. 8, в масс-спектре дериватизованного гидролизата бактериородопсина детектируются пики, соответствующие молекулярным ионам обогащённых дейтерием метиловых эфиров N-Dns-фенилаланина с молекулярным ионом при m/z 417 (ср. m/z 412 для немеченого производного фенилаланина), N-Dns-тирозина с М+. при m/z 429 (ср. m/z 428 для производного тирозина) и N-Dns-триптофана с М+. при m/z 456 (ср. m/z 451 для производного триптофана). Все они отвечают смеси изотнопозамещённых форм аминокислот, различающихся количеством атомов водорода, замещённых на дейтерий. Множественный характер включения дейтерия свидетельствует о возможном вкладе биосинтеза de novo в уровни дейтерированности ароматических аминокислот, но также не исключено, что он определяется самим способом получения изотопномеченых молекул. Кроме вышеобозначенных аминокислот в масс-спектре фиксируются пики молекулярных ионов метиловых эфиров -N-Dns-глицина (m/z 322), N-Dns-аланина (m/z 336), N-Dns-валина (m/z 364) и N-Dns-лейцина/изолейцина (m/z 378). Как и следовало ожидать, эти аминокислотные остатки в бактериородопсине не содержат дейтерия.

Таким образом, проведённые исследования продемонстрировали эффективность масс-спектрометрии электронного удара N-Cbz-производных аминокислот и метиловых эфиров N-Dns-производных аминокислот для исследования уровней изотопного обогащения молекул аминокислот в составе их мультикомпонентных смесей, полученных биосинтетически с использованием микроорганизмов. Метод незаменим для изучения состава пула аминокислот, секретируемых в культуральные жидкости штаммов-продуцентов, выращенных на средах со стабильными изотопами.

Экспериментальная часть

В работе использовали D, L-аминокислоты (Reanal, Венгрия), аденозин- и уридин-5-монофосфаты (Sigma, США), панкреотическую телячью дезоксирибонуклеазу Ι (Fluka Chemie AG, Швейцария), додецилсульфат натрия (Chemapol, Чехо-Словакия). L-[2,3,4,5,6-2Н5]фенилаланин (90 ат.% 2Н), L-[3,5-2Н2]тирозин (96 ат.% 2Н) и L-[2,4,5,6,7-2Н5]триптофан (98 ат.% 2Н) (способы получения указаны в работах [34, 35]), были предоставлены А. Б. Пшеничниковой (МИТХТ им. М. В. Ломоносова). Для синтеза производных аминокислот использовали N-диметиламинонафталин-5-сульфохлорид (дансилхлорид) (Sigma, США), бензилоксикарбонилхлорид (Войковский химзавод, РФ) и диазометан, получаемый из N-нитрозометилмочевины (Merck, Германия).

Исследования проводили с генетически маркированными штаммами бактерий, полученными из коллекции культур Всероссийской коллекции промышленных микроорганизмов (ВКПМ) Государственного научно-исследовательского института генетики и селекции промышленных микроорганизмов:

Brevibacterium methylicum ВКПМ В 5652, L-лейцинзависимый штамм факультативных метилотрофных бактерий, продуцент L-фенилаланина;

Methylobacillus flagellatum KT, L-изолейцинзависимый штамм облигатных метилотрофных бактерий, продуцент L-лейцина;

Halobacterium halobium ЕТ 1001, пигментсодержащий штамм галофильных бактерий, способный синтезировать бактериородопсин;

Выращивание метилотрофных бактерий B. methylicum и M. flagellatum осуществляли на минеральной среде М9 [36] в колбах Эрленмейера объёмом 250 мл с наполнением средой 50 мл по методике [23], используя в качестве источников стабильных изотопов (2H)метанол, (13С)метанол и 2Н2O в присутствии L-лейцина для B. methylicum и L-изолейцина для M. flagellatum в концентрациях 10 мг/л. Клетки отделяли центрифугированием (10000 g, 20 мин). В культуральной жидкости анализировали секретируемые аминокислоты.

Для выделения фракции суммарных белков биомассы клетки дважды промывали дистиллированной водой с последующим центрифугированием (10000 g, 20 мин), экспонировали ультразвуком при 40 кГц (3 x 15 мин) и центрифугировали. Полученный осадок (10 мг) после отделения липидов и пигментов смесью органических растворителей хлороформ-метанол-ацетон (2:1:1) использовали в качестве фракции суммарных белков биомассы.

Для получения дейтериймеченого бактериородопсина использовали синтетическую среду, содержащую 18 аминокислот, в которой немеченые L-аминокислоты фенилаланин, тирозин и триптофан были заменены их дейтерированными аналогами - [2,3,4,5,6-2Н]фенилаланином, [3,5-2Н]тирозином, и [2,4,5,6,7-2Н]триптофаном (количества компонентов приведены в г/л): (D, L-аланин 0.43, L-аргинин 0.4, D, L-аспарагиновая кислота 0.45; L-цистеин 0.05; L-глутаминовая кислота 1.3; L-глицин 0.06; D, L-гистидин 0.3; D, L-изолейцин 0.44; L-лейцин 0.8; L-лизин 0.85; D, L-метионин 0.37; D, L-фенилаланин 0.26; L-пролин 0.05; D, L-серин 0.61; D, L-треонин 0.5; L-тирозин 0.2; D, L-триптофан 0.5, D; L-валин 1.0); нуклеотиды (аденозин-5-монофосфат 0.1; уридин-5 монофосфат 0.1); соли (NaCl 250; MgSO4 x 7H2O 20; KСl 2; NH4Cl 0.5; KNO3 0.1; KH2PO4 0.05; K2HPO4 0.05; цитрат натрия 0.5; MnSO4 x H2O 3 x 10-4; CaCl2 x 6H2O 0.065; ZnSO4 x 7H2O 4 x10-5; FeSO4 x 7H2O 5 x 10-4; CuSO4 x 5H2O 5 x 10-5); глицерин 1.0; ростовые факторы (биотин 0.1 x 10-3; фолиевая кислота 10 x10-3; витамин В12 0.02 x 10-3).

Для выделения фракции пурпурных мембран клетки, полученные после отделения культуральной жидкости и двухкратной промывки дистиллированной водой (100-150 мг), суспендировали в 100 мл 0.1 М буфера трис-HCl (рН 7.6), добавляли 1 мг дезоксирибонуклеазы Ι и инкубировали в течении 5-6 ч при 37 0С, затем разбавляли дистиллированной водой до 200 мл и инкубировали 15 ч при 4 0С. Осадок промывали дистиллированной водой с последующим отделением водной фракции до получения бесцветных промывных вод. Чистоту полученной суспензии пурпурных мембран (в Н2О) контролировали на спектрофотометре Beckman DU-6 (США) по соотношению полос поглощения 280/568 нм (ε280 1.1 x 105 М-1см-1 [37] и ε568 6.3 x 104 М-1 см-1 [38]).

Бактериородопсин выделяли по методу [39], солюбилизируя препараты пурпурных мембран (50 мг) в 2 мл 0.5% раствора SDS в Н2О и осаждая продукт 5-кратным избытком метанола на холоду (00 С). Выход бактериородопсина составил 17-20 мг.

Электрофорез препаратов бактериородопсина проводили в 12.5% ПААГ с 0.1 % SDS. Образцы для электрофореза готовили стандартным способом (протокол фирмы LKB, Швеция). Для количественного определения содержания синтезированного в клетке белка проводили сканирование прокрашенного в растворе Кумасси-голубой R-250 электрофоретического геля на лазерном денситометре CDS-200 (Beckman, США).

Липиды и пигменты экстрагировали смесью хлороформ-метанол-ацетон (2:1:1) по методу Блайя и Дайера [40].

Гидролиз белка проводили 6 М 2НСl (3% фенола в 2Н2О) или 2 М Ва(ОН)2 (1100С, 24 ч) [41].

N-Dns-аминокислоты. К 4-5 мг лиофилизованных препаратов культуральной жидкости и белковых гидролизатов в 1 мл 2 М NaHCO3 рН 9-10 порциями при перемешивании добавляли 25.6 мг дансилхлорида в 2 мл ацетона. Реакционную смесь выдерживали 1 ч при перемешивании при 400 С, затем подкисляли 2 М HСl до рН 3.0 и экстрагировали этилацетатом (3 x 5 мл). Объединенный экстракт промывали водой до значения рН 7.0, сушили безводным сульфатом натрия, растворитель удаляли при 10 мм. рт. ст.

Метиловые эфиры N-Dns-аминокислот. Для получения диазометана к 20 мл 40% КОН в 40 мл диэтилового эфира добавляли 3 г влажной нитрозометилмочевины и перемешивали на водяной бане со льдом в течении 15-20 мин. После окончания интенсивного газовыделения эфирный слой отделяли, промывали ледяной водой до рН 7.0, сушили безводным сульфатом натрия и использовали для обработки препаратов N-дансиламинокислот в составе культуральной жидкости или гидролизатов суммарных белков биомассы.

N-Cbz-аминокислоты. К 1.5 мл охлажденного до 00С раствора культуральной жидкости (50 мг) или белковых гидролизатов (4-5 мг) в 4 М NaOH добавляли порциями при перемешивании 2 мл 4 М NaOH и 28.5 мг бензилоксикарбонилхлорида. Реакционную смесь выдерживали при 00С, перемешивали 3 ч, подкисляли 2 М HCl до рН 3 и продукты экстрагировали этилацетатом (3 x 5 мл). Объединенный экстракт промывали водой до рН 7.0, сушили безводным сульфатом натрия, растворитель удаляли при 10 мм. рт. ст.

ТСХ производных аминокислот осуществляли на пластинках Silufol UV-254 (Чехо-Словакия) в системах растворителей: хлороформ-метанол-уксусная кислота, 10:1:0,3 (А) для N-Cbz-аминокислот и хлороформ-метанол-ацетон, 7:1:1 (Б) для метиловых эфиров N-Dns-аминокислот.

N-Cbz-аминокислоты детектировали по поглощению при 254 нм. Метиловые эфиры N-Dns-аминокислот детектировали по флуоресценции в УФ-свете.

Аналитическое и препаративное разделение смеси N-Cbz-аминокислот культуральной жидкости и белковых гидролизатов осуществляли методом обращённо-фазовой ВЭЖХ [31].

Метиловые эфиры N-Dns-аминокислот разделяли методом обращённо-фазовой ВЭЖХ на жидкостном хроматографе Knauer (ФРГ), снабженным насосом Knauer, УФ-детектором 2563 и интегратором С-R 3A (Shimadzu, Япония). Использовали неподвижную фазу: Separon SGX C18; 18.7 мкм; 150 x 3.3 мм (Kova, Чехо-Словакия); система растворителей: (А) - ацетонитрил-трифторуксусная кислота, (20:80 об/об) и (В) - ацетонитрил. Использовали градиентное элюирование: от 0 до 20% В 5 мин, 20 до 100% В 30 мин, 100% В 5 мин, от 100 до 0% В 2 мин, 0% В 10 мин.

Pages:     | 1 | 2 || 4 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.