WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 ||

Модификация метода получения метиловых эфиров дансил-аминокислот заключалась в прямой обработке препаратов культуральной жидкости, полученной после отделения клеток, дансилхлоридом и диазометаном. В результате применения этого подхода удалось получить чётко интерпретируемые масс-спектры электронного удара метиловых эфиров дансил-аминокислот в присутствии следовых количеств низкомолекулярных метаболитов среды и сопутствующих аминокислот не прибегая к их предварительному хроматографического разделению и очистке. Следует отметить, что в условиях проведения дансильной дериватизации, для основной аминокислоты лизина характерно образование ди-дансильных производных, а для тирозина также происходит дополнительное дансилирование по гидроксильной -ОН-группе. При этерификации аминокислот диазометаном не исключено дополнительное N-метилирование по а-NH2-группе аминокислот, что приводит к появлению в масс-спектре метиловых эфиров дансил-аминокислот пиков, соответствующих соединениям с молекулярной массой на 14 массовых единиц больше исходных [14]. В качестве примера на рис. 2,б приведен масс-спектр секретируемого фенилаланина и сопутствующих аминокислот в составе дериватизированной культуральной жидкости в условиях эксперимента 5 (см. табл.1, опыт 5), где концентрация D2О в среде достигает 49 об.% (спектр приведен относительно контрольных условий (а), где использовали обычную воду и метанол). Из рис.2,б видно, что в этих условиях величина пика молекулярного иона производного фенилаланина (М+. с m/z 414,2) увеличивается по сравнению с контрольными условиями (М+. с m/z 412,0) на 2,2 единицы, что составляет 27,5 % от общего количества атомов водорода в молекуле. Пик с m/z 400, зафиксированный в масс-спектре культуральной жидкости (рис.2,б) вероятнее всего соответствует продукту отщепления метильной группы -СН3 от дейтерированного производного фенилаланина.

Масс-спектр культуральной жидкости, полученной на среде, содержащей 73,5 об.% D2О и 2 об. % СН3ОН после обработки дансилхлоридом и диазометаном представлен на рис. 3,а. Присутствие в масс-спектре этого образца пика молекулярного иона метилового эфира дансил-фенилаланина с М+. с m/z 416,1 (вместо 412 в контроле) указывает на увеличение массы фенилаланина на 4,1 единицу, т.е., 51,2 % атомов в молекуле фенилаланина замещены на дейтерий (рис. 3,а). Необходимо подчеркнуть, что вышеобозначенные атомы дейтерия включаются в молекулу фенилаланина за счет процесса биосинтеза de novo, т. е. по углеродному скелету молекулы, так как маловероятно, что они заместились в в ходе выделения аминокислоты из культуральной жидкости или при химической модификации фенилаланина. Что касается протонов (дейтеронов) при гетероатомах в NH2-, NH-, и -COOH группах аминокислот, то они за счёт лёгкости диссоциации легко обмениваются на дейтерий даже при растворении аминокислот в D2O. Так как все этапы, связанные с обработкой культуральной жидкости, содержащей дейтерий и её химической модификации проводились с использованием немеченных компонентов, растворителей и в т.ч. водных растворов, то эти протоны(дейтероны) из-за лёгкости диссоциации труднее всего поддаются точному подсчёту и контролю. Это могло служить причиной небольшого расхождения результатов при подсчёте степеней дейтерированности аминокислот.

Во всех исследуемых образцах культуральной жидкости B. methylicum кроме основной секретируемой аминокислоты (фенилаланин), обнаружены примеси (на уровне 3-5 мМ) метаболически связанных с ним аланина, валина и лейцина (изолейцина) (см., например рис 3,а). Как видно из рис.3,а, изотопный состав аланина характеризовался увеличением молекулярной массы на 2,5 единицы, валина-3,5 единицы, а лейцина (изолейцина)-4,6 единицами. Таким образом, в отличие от фенилаланина, количество включенного дейтерия в последних трех аминокислотах сохраняет стабильное постоянство в довольно широком интервале концентраций D2O в среде (от 49 об.% до 98 об.%).

Контроль за включением дейтерия в фенилаланин за счет ассимиляции дейтерометанола при росте бактерий на среде, содержащей обычную воду и 2% СD3OD (соответствуют опыту 2, табл.1) показал незначительное количество дейтерия, которое поступает в молекулу фенилаланина вместе с углеродом СD3OD. Процент дейтерирования фенилаланина был оценен по величине пика 413 за вычетом вклада пика примеси природного изотопа (не более 4 %, масс-спектр не приведён). Полученный результат может быть обусловлен разбавлением дейтериевой метки за счёт протекания как биохимических процессов, связанных с распадом дейтеро-метанола при его усвоении клеткой, так и реакциями изотопного обмена и диссоциации. Например, из четырёх атомов дейтерия, имеющихся в молекуле СD3OD, лишь атом дейтерия при гидроксильной группе --OD самый подвижный и поэтому легко диссоциирует в водной среде с образованием СD3OH. Три оставшихся атомов дейтерия в составе СD3OH входят в цикл ферментативного окисления метанола, который также мог привести к потере дейтерия за счёт образования соединений более окисленных, чем метанол. В частности, полученный результат по уровню включения дейтерия в фенилаланин подтверждает классическую схему ферментативного окисления метанола до формальдегида в клетках метилотрофов, который лишь после этого ассимилируется у данного штамма метилотрофных бактерий рибулозомонофосфатным путем фиксации углерода [15].

Так как базовый штамм продуцент фенилаланина был ауксотрофом по лейцину, то очевидно, что уровни включения дейтерия в секретируемый L-фенилаланин на фоне максимальных концентраций тяжелой воды, могут быть ниже теоретически допустимых, вследствие функционирования в клетке ряда биохимических реакций, связанных с ассимиляцией протонированного L-лейцина извне. Отмеченная особенность проявляется при биосинтезе L-фенилаланина на дейтерированной среде, в которой помимо метанола источником дополнительных протонов является немеченный лейцин. Так, в фенилаланине, полученном со среды, содержащей 98 об.% D2О и 2 об.% СН3ОН, только шесть атомов (из восьми обсуждаемых) в молекуле биосинтетически замещены на дейтерий (М+. с m/z 418 вместо 412) (Масс-спектр приведён на рис. 3,б). Эти два незамещенные атома водорода могли происходить из лейцина и метанола, однако авторы не исключают, что подобный эффект является результатом не ассимиляции протонированных субстратов, а вкладом протонов солей в составе ростовой среды. Следует подчеркнуть, что в этом масс-спектре фиксируется пик обогащённого дейтерием бензильного фрагмента с m/z 97 (вместо 91 в контроле), что указывает на то, что местами локализации атомов дейтерия в молекуле фенилаланина являются положения С1-С6 ароматических атомов и сопредельное с ними положение при углеродном атоме b. Причем, как миниум четыре из них могут быть локализованы в самом бензольном кольце молекулы фенилаланина.

Масс-спектрометрический анализ смесей дейтерий меченных аминокислот белковых гидролизатов B. methylicum.

Общие принципы изучения степени дейтерированности аминокислот при данном способе введения метки были также продемонстрированы на примере анализа сложных мультикомпонентных смесей, полученных после гидролиза белка биомассы. В качестве примера на рис.4,б (относительно контрольных условий (а) приведен масс-спектр дериватизованного белкового гидролизата, полученного со среды, содержащей 49 об.% D2O и 2 об.% СН3ОН (табл.1, опыт (5)). Как видно из рис.4, до десяти аминокислот могут быть идентифицированы в масс-спектре гидролизата белка, полученного после обработки дансилхлоридом и диазометаном. Для индивидуальных аминокислот белковых гидролизатов количество включенных атомов дейтерия по скелету молекулы варьирует в пределах 49 %-ной концентрации D2O и составляет от 36,2 % для L-валина до 45,0 % для L-фенилаланина (рис. 4,б).

Вследствие того, что большой интерес представляет использование данного штамма метилотрофных бактерий для наработки униформно меченного белка и аминокислот, было необходимо изучить уровни включения дейтерия в аминокислоты белковых гидролизатов B. methylicum, при росте бактерий на среде, содержащей максимальные концентрации тяжелой воды. Данные по степеням включения дейтерия в аминокислоты белка B. methylicum, полученного со среды, содержащей 98 об.% D2O и 2 об.% СD3ОD (табл.1, опыт (10)) представлены в таблице 2. Как видно из таблицы 2, для таких аминокислот, как глицин и аланин дейтерирование в этих условиях близко к униформному, о чем свидетельствуют высокие степени включения дейтерия в эти аминокислоты, которые составляют 90 % и 97,5 % соответственно. Степень включения дейтерия в L-фенилаланин в составе гидролизатов белка биомассы в условиях максимально насыщенной дейтерием среды также высока, что составляет 95 % (примерно 8 атомов водорода в молекуле замещены на дейтерий). Низкие степени включения дейтерия в другие аминокислоты белка, прежде всего в лейцин (изолейцин) (49 %) в этих условиях могут быть объяснены за счет ауксотрофности штамма в лейцине, который добавляли в среду культивирования в протонированном виде. По-видимому, в условиях ауксотрофности по лейцину вклад атомов дейтерия, синтезируемых de novo в степень дейтерированности самого лейцина, а также метаболически близких с ним аминокислот незначителен.

ТАБЛИЦА 2.

Степени изотопного включения дейтерия в аминокислоты белка B. methylicum, полученного на среде, содержащей 98 об.% D2O и 2 об.% СD3OD.

Метиловые эфиры дансилпроизводных аминокислот

Молекулярные массы немеченных производных аминокислот, (М+.)

Молекулярные массы дейтерированных производных аминокислот (М+.), полученных на среде с 98 об% D2O и 2 об% CD3OD.

Степени изотопного включения дейтерия в аминокислоты, %

Dns-Gly-OMe

322,2

324,0

90,0

Dns-Ala-OMe

336,4

340,3

97,5

Dns-Val-OMe

364,5

368,5

50,0

Dns-Leu(Ile)-OMe

378,5

383,4

49,0

Dns-Phe-OMe

412,0

419,6

95,0

Dns-Asp-OMe

394,5

396,5

66,6

Dns-Tyr-(Dns)-OMe

662,0

668,5

92,8

Dns-Lys-(Dns)-OMe

627,1

632,4

58,9

Таким образом, проведенные исследования показали высокую эффективность использования штамма факультативных метилотрофных бактерий B. methylicum для получения дейтерий-меченных аминокислот разной степени изотопной замещенности на дейтерий, в том числе и униформно меченных. Эти аминокислоты можно выделять как из культуральной жидкости, так и из гидролизатов биомассы. Выбор штамма для этих исследований представляется авторам оправданным, так как B. methylicum характеризуется устойчивостью к максимальным концентрациям тяжёлой воды в среде.

ЛИТЕРАТУРА.

1. Beaufrere B, Fournier V, Salle B., Putet G. // American Journal of Physiology.- 1992.- V.263. - N.1.- P.214-220.

2. Michalczuk L., Ribnicky D. M., Cooke T. J., Cohen J. D. // Plant Physiology. - 1992. - V.100. - N.3. - P.1346-1353.

3. Fesic S. W. and Zuiderweg E. R. // Quarterly Reviews of Biophysics. - 1990. - V.23. - N.2. - P. 97-131.

4. McIntosh L. P. and Dahlquist F. W. // Quarterly Reviews of Biophysics. - 1990. - V. 23. N.1. P. 1-38.

5. Katz J., and Crespi H. L. // Pure Appl. Chem. - 1972. - V.32. - P. 221-250.

6. Shimamura M., Kamada S., Hayashi T., Naruse H., Iida Y. // Journal of Chromatography. - 1986. - V.374. - N.1. - P. 17-26.

7. Hruby V. // J. Synth. and Appl. Isot. Labelled Compounds. - 1985. - V.4. - P. 287-292.

8. LeMaster D. M. // Quarterly Reviews of Biophysics. - 1990. - V.23. - P.133-174.

9. Karnaukhova E.N., Reshetova O.S., Semenov S.Y., Skladnev D.A., Tsygankov Y.D. // Amino Acids. - 1994. - V.6. - P.165-176.

10. Мосин О. В., Карнаухова Е. Н., Пшеничникова А. Б., Складнев Д. А., Акимова О. Л. // Биотехнология. - 1993. - Т.9. - С.16-20.

11. Миллер Дж. Эксперименты в молекулярной генетике. - М.: Мир, - 1976. - С. 393.

12. Bligh E.G., Dyer W.J. // Can. J. Biochem. Physiol. - 1959. - V.37. - N.8. - P.911-918.

13. Vetter W, in: Biochemical Applications of mass-spectrometry (Walles G.R., and Dormor O.C.). - 1980. - First supplementary volume. - Wiley - Interscience. - N.Y. - USA. - P.439.

14. Campbell J., Weiner W.C., Chess E.K. et al. // Biomedical inveron. mass spectrom. - 1990. - V.19. - P.520-522.

15. Nesvera J., Patek M., Hochmannova J. et al., Appl. Microbiol. 35, 777-780, (1991).

О.V. МОSIN

Moscow State Academy of Fine Chemical Technology named after М.V. Lomonosov, 117571.

STUDYING OF BIOSYNTHESIS OF AMINO ACIDS BY BACTERIAL STRAIN Вrevibacterium methylicum ON MEDIA, CONTAINING HEAVY WATER AND DEUTERO-METHANOL.

Pages:     | 1 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.