WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 7 | 8 || 10 | 11 |   ...   | 12 |

В итоге вырабатывается оптимальное решение, одинаково хорошо (или плохо) удовлетворяющее все сети, принявшие участие в процедуре. Исследователь может проанализировать решение, сравнив ответы каждой нейросети до и после подстройки примера [xlviii].

Автоматическое задание стратегии обучения.

Рассмотрим полностью автоматизированное задание стратегии построения решающего блока. Прежде всего определяется список подзадач, причем в каждой подзадаче определяется список обучающих параметров (он может быть общим для всех подзадач) и ответы. Затем задается, сколько нейросетей-экспертов будут решать каждую подзадачу (в простейшем случае - по одному). Далее определяется, будет ли проводится минимизация обучающих параметров. Если да, то можно задать произвольную минимизацию (нахождение минимально возможного для решения задачи списка параметров) или определяется набор параметров, который желательно оставить в списке или, наоборот, исключить из списка. Эту операцию можно провести отдельно для каждой подзадачи, для групп подзадач или для всей задачи в целом. Как дополнительный параметр, можно указать для каждой подзадачи контрольные выборки, на которых будут проверяться результаты обучения и требуемое качество обучения (в процентах правильно распознанных примеров (для классификаторов) или максимально допустимого отклонения (для предикторов). Это все, что должен сделать пользователь при автоматизированном построении решающего блока.

Непосредственно обучение проводится исходя из следующей стратегии. Обучение каждого эксперта в каждой подзадаче начинается с автоматической инициализации нейросети минимальной конфигурации (число нейронов - 2, плотность - 1, характеристика - 0,1, уровень надежности - 0,1 (для классификаторов), уровень отклонения для предикторов - требуемый или вычисленный исходя из характера значений ответа (в самом общем случае берется 1/3 минимальной разности между значениями ответа), время отклика - 2. Проводится обучение нейросети. Дальнейшие действия определяются результатом обучения. В случае успешного обучения проводится тест указанной контрольной выборки и в случае неудовлетворительного результата инициализируется новая сеть с увеличенной характеристикой (шаг увеличения - 0,1). При невозможности обучения инициализируется новая сеть с большим числом нейронов и плотностью.

Таким способом проводится обучение сетей по всем подзадачам. Обученные сети запоминаются. Если задана минимизация параметров, создаются рабочие копии обученных нейросетей и проводится вычисление значимости параметров для каждой сети, после чего следует минимизация параметров у каждой нейросети. Если требуется связанная минимизация (для нескольких нейросетей одновременно), окончательное отключение минимально значимого на данном этапе обучения параметра производится только после того, как все нейросети в связанной группе успешно обучились с исключением данного параметра. В процессе обучения могут автоматически применяться тактические методы (удар, изменение весов классов).

Исходя из приведенного описания, управление стратегией осуществляется по заранее заданному алгоритму. При необходимости пользователь может корректировать стратегию в процессе построения решающего блока на любом его этапе.

Экспертные системы, созданные на основе нейросетевой технологии группой «НейроКомп»

Создание каждой ЭС проводилось согласно разработанной технологии и включало: изучение проблемы; постановку задачи; набор обучающих данных и тестирующих примеров; обучение нейросетей; определение оптимальной схемы ЭС; проведение дополнительных экспериментов; разработку и создание интерфейса программы; подключение к ней обученных нейросетей; испытание системы на примерах, не входящих в обучающую выборку; доучивание системы на этих примерах.

Прогнозирование осложнений инфаркта миокарда.

Поиски возможностей прогнозирования осложнений, которые могут возникнуть в госпитальный период инфаркта миокарда, очень актуальны и являются одной из наиболее сложных задач кардиологии. Прогнозирование необходимо осуществлять при поступлении больного в стационар, сразу же после проведения стандартных методов обследования. Оно должно быть быстрым, проводиться неоднократно в процессе наблюдения за больным по мере поступления новых данных о его состоянии.

Получение прогноза осложнений позволяет врачу целенаправленно проводить профилактику, усилить наблюдение за больным, скорректировать режим физической активности пациента (особенно в предполагаемые сроки возникновения осложнения). Прогноз может определять более длительное и интенсивное лечение антикоагулянтами при угрозе тромбоэмболических осложнений, антиаритмическими препаратами - для профилактики аритмий.

При создании базового ядра ЭС прогнозирования осложнений инфаркта миокарда выбрано 4 вида осложнений, достаточно частых и/или довольно опасных [xlix]. Это фибрилляция предсердий, тромбоэмболические осложнения, перикардит и возникновение/усугубление хронической СН. При постановке задачи мы исходили из необходимости прогнозировать возможность возникновения каждого из четырех выбранных осложнений в отдельности и возможного срока его появления, считая от момента поступления больного в стационар. Таким образом, задача разбивается на 8 подзадач, четыре из которых решаются нейросетями-классификаторами (возникновение осложнений), и четыре - нейросетями-предикторами (сроки возникновения осложнений).

Были выбраны 32 обучающих параметра, отражающие клиническое состояние больного инфарктом миокарда на момент поступления в клинику, данные анамнеза и результаты лабораторных и функциональных исследований: возраст, пол, глубина и локализация инфаркта (по данным электрокардиографии), количество инфарктов в анамнезе, характеристика предшествующей стенокардии, наличие и тяжесть гипертонической болезни и сердечной недостаточности, наличие в анамнезе нарушений сердечного ритма и проводимости, эндокринных заболеваний, тромбоэмболий, хронического бронхита, концентрация калия и натрия в крови, частота сердечных сокращений, характеристика выбранных показателей ЭКГ, размеры отделов сердца по данным эхокардиографии.

Исследованы 300 клинических примеров (Таб. 4). Для экспериментов из общей выборки отдельно для каждого типа нейросетей были выделены обучающая группа (250 человек) и контрольная (тестирующая) группа (50 человек). Разделение выборки производилось случайным образом. Для прогнозирования возникновения каждого осложнения создавались несколько нейросетей, составляющих консилиум. Все нейросети вначале обучались на 250 пациентах обучающей выборки, а затем тестировались на контрольной группе. Результаты теста определялись голосованием в каждом консилиуме. Результаты теста контрольной выборки для прогнозирования фибрилляции предсердий приведены в Таб. 5.

Таблица 4.

Количество больных инфарктом миокарда поклассам в каждой из четырех выделенных по осложнениям подгрупп

Осложнение

Количество

больных

Фибрилляция

предсердий

нет

пароксизмальная форма

постоянная форма

217

60

23

Перикардит

нет

есть

172

128

Тромбоэмболические осложнения

нет

есть

242

58

Возникновение или усугубление сердечной недостаточности

нет

есть

144

156

Таблица 5.

Результаты тестирования консилиума нейросетей, прогнозирующих возникновение и форму фибрилляции предсердий (ФП), проведенные на контрольной выборке из 50 примеров, не участвующих в обучении

Известный

класс

Вычислено как...

Класс 1 Класс 2 Класс 3

Нет ФП - 30 примеров

Пароксизмальная форма ФП

- 12 примеров

Постоянная форма ФП

- 8 примеров

28 2 -

- 11 1

- 1 7

Процент правильно распознанных примеров в тестирующей выборке при прогнозировании возникновения перикардита составил 76%, тромбоэмболий - 82%, возникновения/усугубления сердечной недостаточности - 78%.

Отдельно были созданы и обучены нейросети-предикторы для прогноза сроков возникновения осложнений (начиная с момента поступления больного в клинику).

Система назначения оптимальной стратегии лечения больных облитерирующим тромбангиитом и прогнозирования его непосредственных исходов.

Облитерирующий тромбангиит (болезнь Бюргера) - тяжелое воспалительное заболевание сосудов мелкого и среднего калибра, сопровождающееся тромбозом и нарушением их проходимости. Этиология этого заболевания до настоящего времени остается неизвестной. Подавляющее большинство больных тромбангиитом - мужчины молодого возраста (18 - 45 лет).

Лечение облитерирующего тромбангиита - трудная, далеко еще не решенная задача. В начальных стадиях заболевания обычно ограничиваются терапевтическими мероприятиями - назначением дезагрегантов, противовоспалительных и антигистаминных препаратов. Однако заболевание часто носит злокачественный характер и быстро приводит к ампутации конечности.

В 1990 - 1994 гг. в отделении хирургии сосудов Краевой Клинической Больницы № 1 г. Красноярска под наблюдением находилось 130 больных облитерирующим тромбангиитом. На каждого больного заполнялась анкета, состоящая из 3 разделов.

Первый раздел (104 пункта) включает вопросы, касающиеся анамнеза жизни и данного заболевания, сопутствующих заболеваний; состояние органов и систем, подробное описание имеющегося у больного тромбангиита с характеристикой состояния сосудов конечностей, данные лабораторных и инструментальных методов исследования, характеристику проводившегося ранее лечения. Другими словами, этот раздел отражает исходный статус больного на момент его поступления в стационар.

Второй раздел (11 пунктов) характеризует проведенное в стационаре лечение (консервативное и/или оперативное).

Третий раздел (4 пункта) содержит сведения о непоcредственных исходах проведенного лечения.

Существующие методы лечения тромбангиита часто малоэффективны и процент выполняемых ампутаций остается высоким. Перед врачом стоит задача подобрать оптимальное сочетание методов лечения, действующих на ведущие звенья патогенеза у конкретного больного. Целью проводимого исследования стало создание нейросетевой ЭС для прогноза непосредственных исходов заболевания и выбора оптимального сочетания терапевтических и хирургических воздействий. Соответственно этому ЭС подразделяется на два функциональных блока, каждый из которых решает свой круг задач [l].

Один блок (блок "И" - исходы) прогнозирует непосредственные исходы заболевания, которые зависят от двух групп параметров. Первая группа - исходный статус больного, фиксированные параметры, отражающие состояние больного на момент поступления в клинику, а также данные анамнеза. Однако исход заболевания зависит не только от исходных параметров, но и от проводимого в клинике лечения. Поэтому вторая группа параметров, необходимая для прогноза - примененные методы лечения. Эти параметры неизвестны при поступлении, на этот момент их можно только предполагать. Однако при обучении нейросети используются уже пролеченные больные с известным набором терапевтических и хирургических воздействий. Обучив нейросети прогнозировать исходы тромбангиита в зависимости от исходного статуса и проведенного лечения, можно моделировать результат, оставляя неизменными фиксированные параметры и подстраивая предполагаемые методы лечения.

Другой блок ЭС обучается прямому выбору наиболее оптимальных методов лечения (блок "Л"), используя только первый, фиксированный набор параметров (Рис. 6).

С учетом поставленной задачи были сформированы подгруппы примеров для обучения нейросетей. Для решения подзадач блока "И" примеры были сгруппированы по классам четырьмя способами (Таб. 6), для блока "Л" - 11 способами (Таб. 7).

Для тестирования обученных нейросетей использовались 35 клинических примеров обследованных и пролеченных больных с известными исходами заболевания. Эти примеры не входили в обучающую выборку. Тест каждого примера проводился следующим образом. Сначала тестировались 4 нейросети, прогнозирующие исходы заболевания, причем в качестве параметров лечения, проведенного в клинике, использовались данные о реально назначенном хирургами лечении. Затем пример тестировался нейросетями, назначающими оптимальный набор методов лечения.

После этого проводился повторный тест нейросетями, прогнозирующими исходы, но теперь в пример подставлялись предполагаемые методы лечения, назначенные нейросетями.

Рисунок 6. Схема функционирования ЭС

Таблица 6.

Подзадачи первого (“И”) блока ЭС

Подзадача

Классы

Число примеров

1. Прогноз динамики ишемии

1. Уменьшение ишемии

2. Без изменений

3. Усиление ишемии

85

38

7

2. Прогноз динамики трофических расстройств

1. Динамики нет

2. Уменьшение трофических расстройств

50

80

3. Прогноз исчезновения болей в покое

1. Боли остались

2. Боли исчезли

57

73

4. Ампутация

1. Не производилась

2. Производилась

123

7

Pages:     | 1 |   ...   | 7 | 8 || 10 | 11 |   ...   | 12 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.