WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

3. Основные фонды как фактор,
определяющий динамику инвестиций

Ответ на вопрос о том, определяют ли пригодные к эксплуатации основные фонды динамику инвестиций в отраслях, может быть найден путем оценки параметров инвестиционной функции и проверки ее статистических свойств. Первоначально необходимо определить спецификацию модели и сформировать массив данных для ее оценки.

Обойти проблему небольшого количества годовых наблюдений можно двумя путями: с помощью квартальных данных и с использованием панели отраслевых данных для получения параметров инвестиционной функции на макроуровне. Квартальные данные при их наличии обеспечивают достаточное количество наблюдений для построения инвестиционной функции для каждой отрасли. В то же время точность этих данных будет заведомо невысокой вследствие сезонной корректировки, более низкого качества квартальных ценовых индексов по сравнению с годовыми и наличия лишь годовой балансовой оценки ОФ.

Панельные отраслевые годовые данные позволяют избежать перечисленных выше недостатков квартальных данных, однако параметры и спецификация инвестиционной функции предполагаются одинаковыми для всех отраслей. В то же время техника оценки панельных данных предполагает учет некоторых ненаблюдаемых отраслевых особенностей, что несколько смягчает указанный недостаток. Именно этот подход и используется в данном исследовании.

Что касается спецификации модели, то из набора эмпирических зависимостей, используемых для оценки инвестиционных функций (см., например, обзор в (Bernd, 1990)), для российской экономики на указанном временном интервале с учетом имеющихся годовых данных подходит только одна – так называемая модель гибкого акселератора (Koyck, 1954). Модели на основе q Тобина и NPV требуют оценки капитализации отраслей, а неоклассическая модель инвестиционной функции – показателей доходности в отраслях, которые можно найти только на отдельных участках рассматриваемого временного интервала и лишь для некоторых отраслей. При этом следует отметить, что наличие только одной лаговой переменной в используемых в данной работе спецификациях – это большой недостаток применяемого подхода, который отчасти оправдывается небольшой длиной имеющихся временных рядов.

Для получения более объективной информации о возможности использования показателя пригодных к эксплуатации ОФ и его сравнения с показателем балансовой стоимости ОФ предполагается строить оценки инвестиционной функции, используя оба эти показателя.

3.1. Данные

Поскольку индексы физического объема публикуются только для 5 основных отраслей, именно для них и построена оценка инвестиционной функции. К этим отраслям относятся: промышленность, сельское хозяйство (без скота), строительство, транспорт, торговля и общественное питание. Рассматриваемый период – 1990–2002 гг. (т.е. 13 лет).

Помимо выпуска (Yi,t), где i – номер отрасли, а t – год, каждая отрасль в панели представлена данными по основным фондам в постоянных ценах (Ki,t) (как балансовая оценка Госкомстата РФ, так и пригодные к эксплуатации ОФ) и чистыми вводами (), которые определяются так:

, (7)

где Ri,t – это выбытия ОФ, которые определяются либо как оценка Госкомстата РФ, если Ki,t – официальная оценка балансовой стоимости ОФ, либо из соотношения (6), если Ki,t – пригодные к эксплуатации ОФ.

3.2. Методика

Основу для построения спецификации инвестиционной функции составляет модель акселератора с постоянным λ:

, ( i = 1, 2, …, 5; t = 1991, …, 2002), (8)

где – объем желаемых ОФ в отрасли i в году t, который определяется через мультипликатор μ следующим образом:

, (9)

причем

0 ≤ λ ≤ 1, μ > 0. (9')

При этом предполагается, что мультипликатор во всех отраслях одинаковый.

Для получения параметров λ и μ инвестиционной функции требуется оценить уравнение вида:

, (10)

а затем воспользоваться соотношениями:

,. (11)

Поскольку необходимо найти оценки инвестиционной функции, отражающей поведение экономики в целом, и задача на данном этапе состоит в выделении общего для всех отраслей инвестиционного поведения, предпочтительнее использовать re-оценки1. В этом случае предполагается, что αi и εi,t – независимые случайные величины, причем,. Для построения fe-оценок2 αi рассматривается как детерминированная величина, принимающая определенное значение для каждой отрасли.

Традиционной проблемой при оценке инвестиционных функций вида (10) является наличие автокорреляций (Bernd, 1990). В данном случае гипотеза об их отсутствии также была отвергнута с помощью модификации теста Дарбина-Уотсона для панельных данных (Bhargava, 1983). Устранение влияния автокорреляций на статистические свойства оценок осуществлялось путем принятия гипотезы о наличии автокорреляций первого порядка, соответствующей корректировки оценки ковариационной матрицы и перехода к GLS-оценкам (так называемые random effects GLS-оценки в приложении 2).

Результаты оценивания уравнения (10) и параметров (11) с использованием официальных показателей балансовой стоимости ОФ приведены в табл. П2.1, а с оценкой пригодных к эксплуатации ОФ – в табл. П2.2 приложения 2.

Строгость гипотезы о постоянстве параметров λ и μ на рассматриваемом временном интервале можно несколько ослабить. Если ввести фиктивную переменную:

, (12)

то можно попытаться количественно оценить этот эффект с точки зрения параметров инвестиционной функции λ и μ:

, (13)

. (14)

Подстановка этих соотношений в (8) и (9) приведет к модификации оцениваемого уравнения (10):

. (15)

Однако поскольку в панели всего 5 отраслей3, оценка такого уравнения возможна только с помощью МНК и дает неудовлетворительные статистические результаты. В данном случае приходится воспользоваться приведенной формой вида:

, (16)

и ограничиться оценкой влияния кризиса 1998 г. лишь на мультипликатор μ в виде (14), считая параметр λ неизменным. При этом в дальнейшем в случае расширения панели можно вернуться и к оценке уравнения (15).

Пересчет параметров уравнения (16) в параметры инвестиционной функции осуществляется так:

; ;. (17)

Результаты оценивания уравнения (16) и параметров (17) приведены в табл. П2.3 и П2.4 приложения 2.

3.3. Обсуждение результатов

Обсуждение результатов предполагается строить по следующему плану:

  1. статистические свойства полученных оценок и выявление наиболее приемлемых из имеющихся;
  2. содержательное сопоставление результатов для разных показателей ОФ;
  3. интерпретация параметров инвестиционной функции с точки зрения поставленной во введении задачи.

(i) Исходя из гипотезы о том, что случайная величина (случайные величины) в оцениваемых уравнениях (10) и (16) – белый шум, тест Хауссмана в трех из четырех случаев (табл. П2.2, П2.3, П2.4) позволяет считать re-оценки эффективными и состоятельными. Они же – наилучшие с точки зрения значимости коэффициентов. Оценки параметров инвестиционной функции, полученные с помощью (11) и (17), дают согласующиеся с требованиями (9') результаты.

Однако наличие автокорреляций, выявленное с помощью модифицированного теста Дарбина-Уотсона (Bhargrava, 1983) во всех 4-х случаях, разрушает эту стройную картину. Учет автокорреляций с помощью корректировки оценки ковариационной матрицы и построения на ее основе GLS-оценок дает информацию о чувствительности параметров модели к нарушениям предпосылок базовых fe- и re-моделей. Во всех 4 случаях такая корректировка позволила получить оценки, согласованные с первоначальными. Это дает основание использовать полученные оценки и пытаться их содержательно интерпретировать.

(ii) Сопоставление коэффициентов детерминации моделей без учета эффекта кризиса 1998 г. (табл. П2.1, П2.2) позволяет сделать вывод о более высоком качестве модели на основе балансовой оценки ОФ. Аналогичная ситуация возникает и при сопоставлении табл. П2.3 и П2.4. С точки зрения значимости коэффициентов обе группы моделей эквивалентны и удовлетворительны. При переходе от модели с постоянным μ к модели с фиктивной переменной ожидается, что если она устойчива, то λ поменяется незначительно, а μ окажется в интервале μ0 + μ1 > μ > μ0. Так и получается с re-оценками в табл. П2.2 и П2.4 (строка «Балансовая оценка ОФ» в табл. 4), но не выходит при сопоставлении табл. П2.1 и П2.3 (строка «Пригодные к эксплуатации ОФ» в табл. 4). С этих позиций оценки на основе официальной балансовой стоимости ОФ выглядят предпочтительнее. Однако важно отметить, что параметры моделей на основе пригодных к эксплуатации ОФ также статистически удовлетворительны и согласуются с требованиями (9').

(iii) Установлено, что динамика инвестиций может объясняться как официальной оценкой ОФ, так и несколько измененным ее вариантом пригодных к эксплуатации ОФ. Однако вид зависимости (8) – (9) предполагает, что инвестиции зависят скорее не от самого капитала, а от разницы между его динамикой и динамикой показателя, пропорционального выпуску. В свою очередь, поведение временного ряда основных фондов определяется не только сегодняшними вводами, но и выбытиями. И если вводы – результат воздействия современной рыночной конъюнктуры, то выбытия во многом определяются возрастной структурой нерыночного капитала.

Таблица 4

Параметры инвестиционной функции (8), (9), (14)

Используемый показатель
капитала

μ0 + μ1

модель (8), (9), (14)

μ

модель (8), (9)

μ0

модель (8), (9), (14)

λ

модель (8), (9)

λ

модель (8), (9), (14)

Пригодные к эксплуатации ОФ

1.597

2.280

2.130

0.071

0.081

Балансовая оценка ОФ

2.016

2.087

2.304

0.082

0.075

Примечание. Данные модели с пригодными к эксплуатации ОФ содержатся в табл. П2.1 и П2.3, а с балансовой оценкой ОФ – в табл. П2.2 и П2.4 приложения 2.


1 Re (random effect)-оценки – оценки, соответствующие предпосылке о модели со свободным членом, случайным для каждого входящего в выборку объекта наблюдения.

2 Fe (fixed effect)-оценки – оценки, соответствующие предпосылке о модели со свободным членом, детерминированным, но принимающим различные значения для каждого входящего в выборку объекта наблюдения.

3 Количество отраслей ограничено наличием индексов физических объемов инвестиций, которые публикуются Госкомстатом РФ.




© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.