WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 18 | 19 || 21 |

1225

1

0

0

1

0

Сахалинскаяобл.

65

0

0

2400

1

0

0

0

0

Свердловскаяобл.

66

0

0

486

1

0

0

0

0

Смоленскаяобл.

67

1

1

350

1

0

0

1

0

Тамбовскаяобл.

68

0

0

2050

1

0

1

1

0

Тверская обл.

69

0

0

300

1

0

0

1

0

Томская обл.

70

0

0

1100

0

0

0

1

0

Тульская обл.

71

0

0

100

1

0

0

1

0

Тюменская обл.

72

0

0

183

1

0

0

1

0

Ульяновскаяобл.

73

0

0

1050

1

0

1

1

0

Челябинскаяобл.

74

0

0

460

1

0

0

1

0

Таблица 2 продолжение

Регион

Код

BARR99

BARR01

BANKR_EC

Confl01

FIXPRICE

SOGLPRIC

OGRPRICE

LAW5

Читинская обл.

75

1

1

1000

0

0

0

0

0

Ярославскаяобл.

76

0

0

450

0

0

0

1

0

г. Москва

77

0

0

413

-1

0

0

0

0

г.Санкт-Петербург

78

0

0

413

1

0

0

0

0

2.3. Основныерезультаты

Матрица главных компонент, полученных врезультате обработки массива исходных переменных, приведена в Приложении 1. Тамже (в самой таблице) помечены наиболее значимые переменные и (в заголовках)приведена краткая интерпретация всех главных компонент.

SmBempl = 35,753 + 3,686* Fact2 +15,729*Fact4 + 4,839*Fact9

где

SmBempl – число занятых на малыхпредприятиях в регионе (2001);

Fact2 – вторая главная компонента, вкоторую с наибольшими весами вошли данные по наличию и активности в регионеправозащитных организаций и по частоте отмены нормативных актов местных властейсудами (с отрицательным знаком). Поэтому она может с некоторой натяжкойинтерпретироваться как отражение гарантий прав, обеспечиваемых самим жегражданским обществом;

Fact4 – четвертая главная компонента, вкоторую с наибольшими весами вошли электоральная статистика (прежде всего– голосование заправолиберальные партии и блоки11), а также некоторыепеременные, отражающие влияние в регионе независимых СМИ. В целом она отражаетэлекторальные предпочтения населения и, косвенно, адаптированность населения кусловиям рыночной экономики и относительно свободного общества.

Fact9 – девятая главная компонента, вкоторую с наибольшими весами вошли две переменные, отражающие вынесениеприговоров по статьям главы 19 УК «Преступления против конституционных прав исвобод человека и гражданина» и главы 31 УК «Преступления против правосудия» (втом числе за незаконный арест, фальсификацию доказательств, принуждение к дачепоказаний и т.д.). Эта компонента отражает значение гарантий базовых прав,обеспечиваемых государством (точнее, судебной системой).

R2 = 0,521.

FOR_DIRINV= 49,1 + 291,8*Dumm_rent +72,0*Fact4

где

FOR_DIRINV – нормированные по населению прямыеиностранные инвестиции за 1996-99 гг.;

Dumm_rent – дамми на регионы нефте- игазодобычи.

R2 = 0,182.

Таким образом, как и в первой модели (изработы 2001 г.), к наиболее значимым переменным относятся данные об активностиправозащитных организаций. Вполне естественно, что к наиболее значимымпеременным относятся также впервые введенные данные по правоприменительнымпрактикам, играющим важную роль для обеспечения прав и свобод.

Наибольшую же роль в достижении сравнительновысокой объясняющей способности модели, объясняющей вариацию занятости в маломбизнесе, как представляется из сопоставления результатов работ 2001 г., а такжес учетом приведенных ниже результатов регрессионного анализа с использованиемзависимостей от 1-3 переменных, сыграли переменные, вошедшие в четвертуюкомпоненту (электоральная статистика).

Расширение числа показателей за счетвключения информации о межрегиональных барьерах на перемещение товаров,рецедивах регулирования цен, о назначении внешнего управления, частоприменяемого (на крупных предприятиях) для враждебного захвата (прииспользовании административного давления на суд)12, данных о политическихконфликтах не увеличивает объясняющей способности модели при использованиибольшого набора переменных с выделением главных компонент.

При других (сокращенных с целью повышения«технологичности» –снижения издержек сбора данных для возможности проведения мониторинга) наборахданных в числе значимых так или иначе оказываются главные компоненты, в которыес наибольшими весами входят упомянутые выше электоральные переменные и данныепо приговорам судов, а также данные по наличию и активности правозащитныхорганизаций и независимой прессы (а в простых регрессиях – сами эти переменные).

Поскольку целью настоящего исследования былосоздание гибкого набора инструментов, позволяющих оценивать политические иправовые риски в российских регионах, нами использовался большой набор простыхрегрессионных зависимостей. Полученные результаты приведены в табл. 3 (комментарии см. ввыводах).

В Приложении 2 приведена иллюстрация квозможности построения рейтингов регионов (на основе «расчетных» значенийобъясняемых переменных). Диаграммы показывают, что в большинстве регионовполитико-правовая компонента играет ключевую роль. Хотя, в силу понятныхпричин, столичные и пограничные регионы (Приморский край, Брянская область)демонстрируют намного более высокий уровень развития малого бизнеса, чем«предсказанный» с помощью выделенных нами факторов. То же относится к некоторымиз регионов, в которых расположены крупные экспортные производства (Вологодскаяобласть). Предметом отдельного анализа должны стать регионы, «недооцененные»малым бизнесом (т.е. имеющие, согласно нашим данным, нереализованныеотносительные преимущества по уровню политических рисков), – Архангельская, Мурманская,Пермская, Томская области.

В Приложении 3 дана таблица, в которойпроранжированы регионы. Ранжирование проводилось с использованием регрессионнойзависимости (1.4) из табл. 3для показателя динамики среднесписочной численности занятых в малом бизнесе. Вэтом соотношении среднесписочная численность занятых (SmBRat) положительнозависит от электоральной поддержки правых, либеральных списков, от наличия врегионе оппозиционных СМИ (OPPSMI) и сети столичных (иностранных)корреспондентов (CapNet&For). Полученная зависимость имеет вид:

SmBRat = 3750+ 170,3*EL99RIGHT 1322,2* OPPSMI+ 1977,6* CapNet&For. Пожалуй, кроме невысокого места Новгородской области,никаких неожиданностей в этой таблице не наблюдается.

В первой десятке находятся регионы сотносительно конкурентным рынком СМИ, высоким уровнем поддержкиправолиберальных сил на выборах и при этом сравнительно высоким уровнем независимой от властей деловой активности – Санкт-Петербург, Нижегородская,Томская, Пермская области, Москва и Московская область. Среди замыкающихрейтинг регионов –Амурская, Магаданская, Орловская области, республики Адыгея,Кабардино-Балкария, Северная Осетия.

Таблица 3

Результаты регрессионного анализа
(без использования главных компонент)

Pages:     | 1 |   ...   | 18 | 19 || 21 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.