WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 13 | 14 || 16 | 17 |   ...   | 20 |

В предыдущей теме, рассматривая закономерности и механизмы саморегуляции живых систем, мы вынуждены были затронуть и проблему самоорганизации. Несмотря на созвучность терминов и их кажущуюся однозначность, на самом деле они выражают альтернативные понятия. Как мы только что показали на примере экологических систем, саморегуляция означает поддержание стабильного состояния системы, ее гомеостаз на основе обратных отрицательных связей, тогда как самоорганизация - это необратимое изменение, развитие системы на основе обратных положительных связей. В соответствии с законами диалектики эти две противоположности взаимодействуют, дополняют друг друга, так что вместе обеспечивают процесс устойчивого развития биосистем.

В этой теме мы должны более основательно рассмотреть вопросы происхождения и исторического развития жизни на Земле, эволюцию живых форм, причины и движущие силы этих глобальных процессов. Ключевым понятием в проблеме эволюции сегодня выступает понятие самоорганизации как основы любого процесса развития. В кругу этих проблем на стыке интересов физики, химии, биологии, а также социологии и философии во второй половине XX века возникла новая наука синергетика (от греческого synergos - совместно действующий) - наука о самоорганизации физических, биологических и социальных систем.

До недавнего времени проблема эволюции жизни оставалась чисто биологической, так как еще в XIX веке эволюция в неживых системах понималась физиками иначе, чем в биологии. Обращаясь с системами закрытого типа, теплофизика считала, что их самопроизвольное изменение, то есть эволюция, протекает путем дезорганизации и разрушения систем. При этом доля свободной энергии, способной к совершению работы, в системе убывает, а энтропия системы - деградированная, отработанная энергия - растет и стремится к максимальному значению. Этот закон был сформулирован как второе начало термодинамики, о чем мы уже говорили в сегменте 12. Однако оказалось, что реальные системы в природе являются открытыми. Это означает, что они обмениваются с внешней средой веществом, энергией и информацией. При поглощении внешней энергии в них возникают процессы самоорганизации, усложнения материи, но при этом происходит диссипация (рассеяние) использованной энергии, которая становится непригодной к производству работы. Можно сказать, что открытая развивающаяся система производит энтропию, но не накапливает ее, а рассеивает во внешнюю среду. Таким образом, интерес ученых сместился к изучению открытых диссипативных систем и принципов их взаимодействия с внешней средой, так как в этом взаимодействии и виделся ключ к пониманию универсальных законов эволюции.

Диссипативные системы - способные к поглощению и диссипации энергии и поддерживающие за этот счет свою собственную структуру и самоорганизацию - существуют на разный уровнях организации материи. Мы уже видели это на примере жизнедеятельности элементарной живой системы - клетки (см. сегмент 12 и рис. 4). За счет солнечной энергии или энергии экзотермических химических реакций клетка строит из простых неорганических веществ сложные органические вещества, поддерживает свою целостность и развитие, тем самым противодействуя росту энтропии.

Оказалось, что диссипативные процессы самоорганизации происходят и в неживой природе. В 60-70-е годы XX века физиками открыты кооперативные резонансные процессы элементарных частиц в лазере, происходящие под действием внешнего света, а в химии открыты колебательные реакции, идущие по принципу «химических часов». Причем движущей силой самоорганизующихся реакций, пружиной химических часов может выступать такая незаметная на первый взгляд сила, как гравитационное поле Земли. Колебательная химическая система, названная брюсселятором, изучена отечественными учеными радиохимиком Б. П. Белоусовым и биофизиком А. М. Жаботинским. При свободном поступлении в такую систему химических субстратов и при наличии в ней катализаторов происходит реакция, продукты которой удаляются, освобождая место для поступления новой порции субстрата. Реакция идет по замкнутому циклу и в результате изменения концентрации реагирующих веществ сопровождается образованием характерных пространственных структур - в виде расходящихся колец на реакционной поверхности. Создается впечатление пульсирующей, «живущей» химической системы.

Теоретическое объяснение и математическую модель процессов самоорганизации диссипативных структур предложил бельгийский физико-химик И. Р. Пригожин, получивший в 1977 г. за эту работу Нобелевскую премию. Назовем основные положения синергетики, объясняющие механизм самоорганизующихся процессов. С некоторыми из них мы уже хорошо знакомы.

1. Самоорганизующаяся система должна быть открытой - доступной для обмена веществом, энергией и информацией с внешней средой.

2. Система должна быть неравновесной, то есть находиться достаточно далеко от точки термодинамического равновесия (точка дезорганизации с максимальной энтропией), так как вблизи этой точки наступает необратимое скатывание к равновесному состоянию.

3. Образование нового порядка через флуктуации. В системе всегда возникают флуктуации - случайные отклонения от среднего положения. По законам саморегуляции они устраняются, но при достаточной неравновесности системы за счет свободной энергии отклонения усиливаются, наступает момент бифуркации - переломная точка в развитии системы, за которой возможно устойчивое отклонение от прежнего состояния. Прежний порядок исчезает, возникает и закрепляется новый порядок элементов в системе.

4. Самоорганизация ведет к новому порядку согласно принципу

обратной положительной связи, по которому отклонения в системе не устраняются, а напротив, закрепляются и усиливаются.

5. Самоорганизация ведет к нарушению симметрии - структура и

свойства системы до и после точки бифуркации не симметричны, то есть различаются в следствие необратимости процессов развития.

6. Самоорганизация возможна при некотором критическом количестве элементов в системе, достаточном для возникновения их кооперативного поведения. Путь к новому качеству возможен через изменение количества.

Разумеется, здесь приведены лишь самые необходимые условия самоорганизации. В зависимости от уровня сложности развивающихся систем, могут появляться и другие, частные факторы, необходимые и достаточные для полноценной эволюции. Наша дальнейшая задача - найти эти факторы в процессах исторического развития жизни на Земле. И первый вопрос - о происхождении жизни как таковой.

СЕГМЕНТ 31. ВОЗНИКНОВЕНИЕ ЖИЗНИ НА ЗЕМЛЕ

От античных времен до средних веков многие философы и ученые считали, что живые организмы могут возникать из неживой материи. Но эта принципиально важная мысль не получала доказательств. Представления о происхождении лягушек и рыб из ила, а мух из гнилого мяса были опровергнуты в 1661 г. итальянским врачом Франческо Реди, который в простых опытах показал, что мухи возникают не из мяса, а из яиц, отложенных в мясо другими мухами. Через 200 лет выдающийся французский микробиолог Луи Пастер поставил точку в спорах о самозарождении жизни, доказав, что даже микробы - мельчайшие свободноживущие клетки - не могут возникать из мертвой, прокипяченной питательной среды. При этом Пастер убедил даже виталистов, которые считали, что для возникновения жизни нужна особая «жизненная сила». Он придумал знаменитую колбу с длинным S-образным горлышком, в которой после кипячения бульона, несмотря на то, что горлышко оставалось открытым и доступным для «жизненной силы», микробы тем не менее не заводились. В 1862 г. Пастер по этому поводу выиграл специальную премию Французской академии наук, объявленную тому, кто разрешит проблему самозарождения жизни. Восторжествовал закон: все живое - от живого. Но значило ли это, что жизнь не могла зародиться на Земле из неживого субстрата в доисторические времена, когда еще не было никаких организмов, да и состав земной поверхности, вероятно, был другим, нежели в современную эпоху Тогда откуда и как появились первые живые существа, хотя бы те же бактерии Убедительного ответа на этот вопрос нет до сих пор, хотя имеются более или менее обоснованные гипотезы.

Так называемая «гипотеза» креационизма - о сотворении жизни сверхъестественным, божественным существом - не имеет никаких доказательств. Она основана на вере и является по сути не научной, а религиозной идеей, поэтому нами рассматриваться не будет.

Более интересна гипотеза вечности жизни, которая в представлениях шведского физико-химика конца XIX века Аррениуса известна как теория панспермии (от греческих pan - всеохватывающий и sperma - семя). Согласно этой гипотезе жизнь всегда присутствует в космосе в виде мельчайших спор микроорганизмов, которые мигрируют между планетами, галактиками в составе комет, метеоритов и других космических тел, пересекающих большие пространства. Когда-то жизнь попала и на Землю, а потом развивалась, совершенствовалась. Выполнен ряд работ с метеоритными телами, в которых найдены органические вещества (аминокислоты, спирты, углеводороды), а также мельчайшие замурованные пузырьки, похожие на отпечатки клеток или спор. В некоторых метеоритах, упавших на Землю в 40-50-х годах и недавно извлеченных, найдены даже бактерии. Кроме того, астрофизики на основании спектральных анализов удаленных космических тел утверждают, что и в космосе присутствуют органические вещества; особенно много их в кометах. Однако, все эти наблюдения не являются доказательствами присутствия жизни. Органическое вещество - соединения на основе углерода - вполне может быть неживого происхождения, пузырьки в метеоритах скорее всего были заполнены газами, а встречаемые в метеоритных останках бактерии, очевидно, проросли за десятилетия из почвы. В космосе ни вирусы, ни бактерии пока что не обнаружены. К таким выводам сходится большинство ученых, озабоченных проблемой происхождения жизни.

Для полноты картины добавим, что существует еще теория направленной панспермии, согласно которой жизнь в виде простейших организмов на Землю занесли инопланетяне, опередившие нас по уровню развития на миллиарды лет. Эта идея подогревается наблюдениями различных НЛО, спекуляциями по поводу падающих «летающих тарелок» и захваченных, но утаиваемых от общественности, инопланетян. Оставим эти домыслы журналистам и досужим обывателям, поскольку в научной среде факты о посещении Земли какими-либо существами отсутствуют.

Даже если жизнь «вечна» и на Землю попала из космоса, остается вопрос о происхождении первых организмов - где бы и когда бы они не возникли. Поскольку современные космологические теории, в частности теория большого взрыва, выводят Вселенную из материального хаоса, ни о каком присутствии в Космосе живых организмов до появления Вселенной не может быть и речи. Поэтому обратимся к тем гипотезам, которые объясняют абиогенное возникновение жизни из первичных неорганических субстратов, причем ни где-нибудь в космических далях, о которых мы мало что знаем, а у нас на Земле.

Исходя из макромолекулярной специфики живой материи - как помним, ее основу составляют белки и нуклеиновые кислоты - любая теория абиогенного (не из живого) возникновения жизни в первую очередь должна объяснить происхождение этих сложных нерегулярных полимеров и, более того, предложить механизм возникновения генетического кодирования первичной структуры белков через структуру ДНК и РНК (см. центральную догму молекулярной биологии - сегмент 22). Кроме того, надо понять как возникли липидные мембраны и тогда несложно прийти к формированию протоклеток - простейших комочков живой плазмы, ограниченных мембраной. В современной биологии сложилось два подхода к объяснению этих механизмов и соответственно две модели абиогенного происхождения жизни: бульонно-коацерватная и твердоматричная модели.

Бульонно-коацерватная модель исходит из того, что сложные органические вещества возникли в растворах (в «бульоне»), из которых формировались коацерваты - прямые предшественники протоклеток.

Уже Ламарк в 1802 г. высказал идею о самопроизвольном зарождении живого под действием «флюидов» - теплоты и электричества. Позднее Чарльз Дарвин в одном из частных писем высказывал мысль о самозарождении жизни на Земле в каком-нибудь «маленьком теплом водоеме». Он допускал, что жизнь возникла из молекул химических веществ, которые под действием света, тепла и электричества взаимодействовали, давая сложные соединения. При этом Дарвин замечал, что такое было возможно только в эпоху первобытной Земли, так как в современных условиях всякий новый организм становился бы жертвой конкуренции или хищничества со стороны уже существующих организмов.

В 20-е годы XX века гипотеза возникновения жизни на основе химической эволюции была детально разработана российским академиком А. О. Опариным и, независимо от него, американцем Дж. Холденом, а позднее получила некоторые экспериментальные подтверждения. В современном толковании, согласно этой гипотезе, жизнь возникла из неорганических веществ в несколько этапов, причем химическая эволюция перешла в биологическую эволюцию. Как же это могло быть

Возраст Земли определяют в 5-7 млрд лет. В этот ранний период наша планета представляла раскаленное газо-пылевое облако. Около 4 млрд лет назад образовалась кора. Примерно 3,6 млрд лет назад уже возникла жизнь. По геологическим данным первые организмы - бактерии и сине-зеленые водоросли - населяли воды мирового океана: моря, лагуны, ванны, гидротермы (места выхода горячих газов). Но появлению микроорганизмов предшествовала длительная химическая эволюция, в ходе которой на первом этапе из неорганических веществ синтезировались органические биополимеры.

Pages:     | 1 |   ...   | 13 | 14 || 16 | 17 |   ...   | 20 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.