WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 |

a18

-3,317

(-2,62)

a20

3,918

(4,17)

a23

-2,450

(-2,08)

a26

2,877

(2,92)

ACBN_L

-14,271

(-3,65)

FL_A

13,279

(5,15)

6,611

(1,81)

B_L

-14,467

(-2,27)

-12,328

(-2,14)

-38,852

(-1,81)

PD_L

8,081

(3,31)

DCIA

27,273

(1,84)

9,486

(2,69)

FS_A

9,506

(3,33)

S

83,707

(3,07)

RD

0,187

(2,54)

209,18

(1,85)

RGKO

62,306

(3,38)

RMBK

22,026

(2,03)

McFadden R2

0,357

0,532

0,328

LR-статистика

99,59

(6,7⋅10-16)

82,59

(4,6⋅10-13)

30,54

(3,1⋅10-5)

Тест Хосмера-Лемешоу

7,162

(0,519)

2,608

(0,957)

5,828

(0,666)

Процент успеха

80,29%

87,50%

79,17%

Примечания:

1. c – свободный член, ai – «фиксированные эффекты» для отдельных банков, ACBN_L Доля остатков на корреспондентских счетах в банках-нерезидентах в общем объеме активов, FL_A Отношение иностранных обязательств к активам, B_L Доля средств бюджетов всех уровней и внебюджетных фондов в общем объеме обязательств, PD_L Доля депозитов населений в общем объеме обязательств, DCIA Разница между темпами прироста кредитов нефинансовому сектору у данного коммерческого банка и темпом прироста кредитов нефинансовому сектору по всей банковской системе, FS_A Доля вложений в федеральные государственные ценные бумаги в общем объеме активов, S Доля активов банка в совокупном объеме активов банковской системы (без Сбербанка РФ), RD Средневзвешенная ставка по депозитам физических лиц, RGKO Средневзвешенная доходность ГКО-ОФЗ к погашению, RMBK Средневзвешенная ставка по однодневным рублевым МБК.

2. В уравнениях оставлены только статистически значимые (на 10% уровне значимости) «фиксированные эффекты» для отдельных банков. Номера банков: 1 – «Автобанк», 2 – «Альфа-банк», 4 – «Башкредитбанк», 5 – «Возрождение», 7 – «Еврофинанс», 10 – «МДМ-банк», 13 – «Менатеп», 15 – «Мост-банк», 16 – «МФК», 18 – «ОНЭКСИМ Банк», 20 – «Петровский», 23 – «Российский кредит», 26 – «Юнибест».

3. В скобках приведены значения t-статистики для оценок коэффициентов, для LR-статистики и теста Хосмера-Лемешоу – уровень значимости.

4. LR-статистика (Likelihood Ratio statistics), тест Хосмера-Лемешоу (Hosmer-Lemeshow test)35 – показатели качества моделей с бинарной зависимой переменной. LR-статистика является аналогом F-статистики, статистика теста Хосмера-Лемешоу имеет распределение χ2 и показывает уровень различия между фактическими и оцененными значениями зависимой переменной по обеим группам (нули и единицы). Большие значения статистики теста (низкий уровень значимости) свидетельствуют о значительном расхождении фактических значений зависимой переменной и оценок вследствие неправильной спецификации модели.

5. Процент успеха – доля правильно предсказанных значений зависимой переменной (пороговое значение для принятия равенства зависимой переменной единице – 0,5).

Оценки модели №1 показывают, что вероятность возникновения проблем у банков по всей выборке определяется следующими факторами: долей средств на счетах в банках-нерезидентах в общем объеме активов банка, отношением иностранных обязательств к активам, долей средств бюджетов всех уровней и внебюджетных фондов в общем объеме обязательств банка, долей вкладов населений в общем объеме обязательств банка, разницей между темпами роста кредитов нефинансовому сектору у банка и во всей банковской системе, а также средней номинальной ставкой по рублевым депозитам населения36.

Такой результат вполне согласуется с логикой развития банковского кризиса в России и поведением отдельных банков при возникновении у них проблем. Так, очевидно, что наличие средств на счетах в иностранных банках позволило банкам облегчило банкам решение проблемы исполнения иностранных обязательств (в том числе по срочным сделкам), либо послужило гарантией платежеспособности банка. Большая доля средств бюджетов всех уровней и внебюджетных фондов также снижало вероятность возникновения проблем. Однако здесь работал противоположный принцип: банки, обслуживающие бюджетные счета, пользовались поддержкой соответствующих уровней власти или государственных органов, и отсутствие явных проблем в них не всегда соответствовало истинному положению дел.

Факторы, повышающие вероятность возникновения проблем, отражают, в первую очередь, ошибки в управлении активами и пассивами банков, несоответствие срочности активов и пассивов данного кредитного учреждения. Большинство выданных в 1997–1998 годах крупными российскими банками кредитов являлись долгосрочными и предоставлялись, преимущественно, родственным компаниям, входившим в состав образовавшихся финансово-промышленных групп. В то же время, обязательства банков (в том числе иностранные) были краткосрочными. Поэтому банки, проводившие ускоренную кредитную экспансию (темп роста кредитов у них превышал показатель для банковской системы в целом), сталкивались с серьезными проблемами ликвидности (liquidity) даже при платежеспособности (solvency) в среднесрочном периоде. Потребность в привлечении средств приводила к необходимости повышать ставки по депозитам населения.

Большой объем иностранных обязательств увеличивал вероятность возникновения проблем у банков, преимущественно, в период девальвации рубля (III–IV квартал 1998 года). Примечательно, что переменная, отражающая падения курса рубля (номинального или реального), по результатам оценки модели не оказывает статистически значимого влияния на вероятность возникновения проблем у банков, т.е. эффект девальвации учтен в изменении других объясняющих (микроэкономических) факторов37.

Особый интерес представляет интерпретация «фиксированных эффектов», т.е. оценка более высокого или более низкого уровня вероятности возникновения проблем у конкретного банка при прочих равных показателях баланса. К банкам «более подверженным» риску возникновения проблем у «Башкредитбанк» и «Менатеп». С другой стороны, риск возникновения явных проблем у «Автобанка», «Альфа-банка» и банка «Еврофинанс» был ниже.

Очевидно, что банки «Башкредитбанк» и «Менатеп» имели некоторые специфические черты, позволявшие им не бояться демонстрировать признаки проблемности. Так, «Башкредитбанк» являлся фактически «карманным» банком Правительства Башкирии и был вынужден подчиняться неформальному давлению чиновников башкирского правительства, заставлявших банк выдавать заведомо «плохие» кредиты. Однако Национальный банк Башкирии снисходительно относился на рискованную кредитную политику банка, и ограждал его возможных санкций со стороны ЦБ РФ. После создания ФПГ «Роспром» банк «Менатеп»сознательно пошел на ухудшение баланса за счет долгов нефтяной компании «ЮКОС» и ее перекредитования в соответствии с условиями реструктуризации долгов компании.

С другой стороны, вероятность возникновения проблем у «Автобанка» и «Альфа-банка» была ниже, поскольку значительная доля должников банков представляла собой группы аффилированных кредитных организаций (у «Автобанка») и фирм, входящих в состав группы «Альфа» (у «Альфа-банка»), и взаимная задолженность могла показываться в целях «оптимизации» налогооблагаемой базы. Банк «Еврофинанс» получал мощную поддержку со стороны «материнского» банка – росзагранбанка «Евробанк» (Париж) – который неоднократно предоставлял большие кредитные линии своему российскому дочернему банку для преодоления проблем у последнего.

Разделение всей выборки банков на две подвыборки, объединяющие группы «живых» и «проблемных» банков позволило разделить факторы, влиявшие на вероятность возникновения проблем у обеих групп. Так, мы получаем возможность разделить факторы, определявшие вероятность возникновения проблем, связанных с кризисов 1998 года (группа «проблемных» банков), и факторы, характеризующие типичное поведение «живых» российских банков.

Оценки модели №2 свидетельствуют о том, что вероятность возникновения проблем у группы «живых» банков определялась, преимущественно, факторами, влиявшими на краткосрочные колебания ликвидности и прибыльности банков. Так, вероятность возникновения проблем в этой группе повышалась при росте номинальных процентных ставок на рынке ГКО и по межбанковским рублевым кредитам. На вероятность возникновения проблем в 1998 году сильное влияние оказала доля вложений в федеральные ценные бумаги в общем объеме активов: падение цен на ГКО-ОФЗ и «замораживание» внутреннего государственного долга негативно сказались на качестве балансов банков, хотя и не привел к их краху.

Еще фактором, повышающим вероятность возникновения проблем в данной группе банков, был размер кредитного учреждения (доля активов банка в совокупных активах банковской системы без Сбербанка РФ). Такой результат не является уникальным для России38: более крупные банки чаще проводят рискованную политику и допускают ухудшение показателей баланса в надежде, что государство не допустит их банкротства из-за их величины (too big to fail), либо, что масштаб их деятельности позволит преодолеть краткосрочные проблемы собственными силами.

Вероятность возникновения проблем была ниже у банков с высокой долей средств бюджетов и внебюджетных фондов в обязательствах. Необходимо отметить, что вероятность возникновения проблем у группы «живых» банков не зависела от объема иностранных обязательств и иностранных ликвидных активов. Само отнесение данных банков к группе «выживших» свидетельствует о том, что ухудшение баланса вследствие девальвации рубля не стало для них серьезной проблемой.

Pages:     | 1 | 2 || 4 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.