WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 ||

amorphous silicon nanoparticles, containing 300, 400, and [2] Z. Chen, H. Jiao, G. Seifert et al. J. Comput. Chem., 24, atoms, under their heating from 300 up to 1700 K is investigated (2003).

by a molecular dynamics method. The energy and the mean length [3] K. Nishio, J. Koga, T. Yamaguchi, F. Yonezawa. Phys. Rev. B, of Si–Si bond are calculated and the mean number of bonds per 67, 195 304 (2003).

atom is determined. Temperature stresses result in changing the [4] N.-M. Park, C.-J. Choi, T.-Y. Seong, S.-J. Park. Phys. Rev. Lett., distribution of excess potential energy on concentric layers of the 86, 1355 (2001).

nanoparticles. The middle spherical layer of a warm“ nanoparticle [5] B.-H. Kim, C.-H. Cho, T.-W. Kim, N.-M. Park, G.Y. Sung, ” is the most favourable in terms of its energetic properties. We S.-J. Park. Appl. Phys. Lett., 86, 091 908 (2005).

[6] L. Pizzagalli, G. Galli, J.E. Klepeis, F. Gygi. Phys. Rev. B, 63, considered the behaviour with the temperature change in radial 165 324 (2001).

and tangential components of the atoms’ mobility coefficient in [7] L. Mitas, C. Grossman, I. Stich, J. Tobik. Phys. Rev. Lett., 84, concentric layers. We also established the presence of a liquid 1479 (2000).

layer on the surface of nanoparticles in the vicinity of the melting [8] U. Rothlisberger, W. Andreoni, M. Parrinello. Phys. Rev. Lett., transition. Vitreous nanoparticles have a higher kinetic stability 72, 665 (1994).

than the appropriate size amorphous particles.

[9] Y. Kawazoe, T. Kondow, K. Ohno. Clusters and Nanomaterials. Theory and Experiment (Berlin, Springer, 2002) ch. 2, p. 57.

[10] K.-D. Rinnen, M.L. Mandich. Phys. Rev. Lett., 69, (1992).

[11] K. Efrajani, Y. Hashi, K. Shida, Y. Kawazoe. Computational Modeling and Simulation of Materials, ed. by P. Vincenzini, A. Degli Esposti (Tokyo, Techna Srl, 1999) ch. 1, p. 15.

[12] M.R. Zachariah, M.J. Carrier, E. Blaisten-Barojas. J. Phys.

Chem., 100, 14 856 (1996).

[13] F.H. Stillinger, T.A. Weber. Phys. Rev. B, 31, 5262 (1985).

[14] C.R. Miranda, A. Antonelli. J. Chem. Phys., 120, 11 (2004).

[15] O. Sugino, R. Car. Phys. Rev. Lett., 74, 1823 (1995).

[16] А.Е. Галашев, В.А. Полухин, И.А. Измоденов, О.А. Галашева. Поверхность. Рентген. синхротр. и нейтрон. исслед., №1, 41 (2006).

[17] А.Е. Галашев, В.А. Полухин, И.А. Измоденов, О.Р. Рахманова. Физика и химия стекла, 32, 99 (2006).

[18] J.D. Kubicki, A.C. Lasaga. American Mineralogist., 73, (1988).

[19] C.L. Briant, J.J. Burton. Nature Phys. Sci., 243, 100 (1973).

Физика и техника полупроводников, 2007, том 41, вып.

Pages:     | 1 | 2 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.