WWW.DISSERS.RU


...
    !

Pages:     | 1 |   ...   | 2 | 3 ||

between the valence band maximum and conduction band [13] C.S. Wang, B.M. Klein. Phys. Rev. B, 24, 3393 (1981).

minimum, but also change the dispersion around the point.

[14] M.-Z. Huang, W.Y. Ching. J. Phys. Chem. Sol., 46, 977 (1985).

Also, conduction-band effective masses calculated using the [15] R. Winkler. In: Proc. 24th Int. conf. on the physics LDA lattice constant are closer to experimental data than of semiconductors, ed. by D. Gershoni (World Scientific, those calculated using the experimental lattice constant.

Jerusalem, 1998).

The effective masses for all the compounds considered [16] H. Kageshima, K. Shiraishi. Phys. Rev. B, 56, 14 985 (1997).

somewhat agree with those calculated by Huang and [17] T.E. Ostromek. Phys. Rev. B, 54, 14 467 (1996).

Ching [14] using a minimal basis semi-ab initio approach [18] P. Pfeffer, W. Zawadzki. Phys. Rev. B, 53, 12 813 (1996).

and by Wang and Klein [13], but the agreement is not [19] Z.H. Levine, D.C. Allan. Phys. Rev. Lett., 63, 1719 (1989).

systematic.

[20] A.L. Efros, M. Rosen. Appl. Phys. Lett., 73, 1155 (1998).

We found that correctness of the LDA band parameters [21] H. Fu, L.-W. Wang, A. Zunger. Appl. Phys. Lett., 71, for all the compounds considered is not systematic. (1997).

[22] T. Nakashima, C. Hamaguchi, J. Komeno, M. Ozeki. J. Phys.

Comparing the LDA band parameters calculated using Soc. Japan 54, 725 (1985).

LDA and using experimentall lattice constants, we conclude [23] C. Hermann, C. Weisbuch. Phys. Rev. B, 15, 823 (1977).

that the latter is more preferable to use for LDA band[24] S.-H. Wei, A. Zunger. Phys. Rev. B, 37, 8958 (1988).

structure calculation. We have shown that consideration of [25] O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie.

the d-electrons of group-II atoms in the core can give more Phys. Rev. B, 50, 10 780 (1994).

correct band parameters for AIIBVI compounds. We found [26] P. Schrer, P. Krger, J. Pollman. Phys. Rev. B, 47, that involvement of the d-electrons of group-II atoms into (1993).

the valence shell in the LDA band-structure calclulations [27] M. Rohlfing, P. Krger, J. Pollmann. Phys. Rev. B, 56, Rresults in decrease of band gaps, increase of lattice (1997).

constants, decrease of momentum matrix elements, increase [28] M. Rohlfing, P. Krger, J. Pollman. Phys. Rev. B, 57, of Luttinger parameters, and decrease of electron, heavy(1998).

hole and light-hole effective masses along all directons.

[29] W. Luo, S. Ismail-Beigi, M.L. Cohen, S.G. Louie. Phys. Rev.

In this case, only equilibrium lattice constant can be B, 66, 19 5215 (2002).

[30] L. Ley, R.A. Pollak, F.R. McFeely, S.P. Kowalczyk, determined with high accuracy, while all the other band D.A. Shirley. Phys. Rev. B, 9, 600 (1974).

parameters are inaccurate.

[31] N. Trouillier, J.L. Martins. Phys. Rev. B, 43, 1993 (1991).

This work was supported by an NSF CAREER award [32] L.-W. Wang. Planewave total energy code (PEtot), (NSF Grant No. 9984059). We thank Dr. Julia Mullen http://www.nersc.gov/linwang/PEtot/PEtot.html (2001).

(Worcester Polytechnic Institute) and Dr. L.-W. Wang [33] J.P. Perdew, A. Zunger. Phys. Rev. B, 23, 5048 (1984).

(NERSC, Lawrence Berkeley National Laboratory) for help [34] D.M. Ceperley, B.J. Alder. Phys. Rev. Lett., 45, 566 (1980).

with the computations. Band-structure calculations have [35] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos. Rev. Mod. Phys., 64, 1045 (1992).

been performed using the PEtot code [32] developed by the [36] S.K. Pugh, D.J. Dugdale, S. Brand, R.A. Abram. Semicond.

U.S. Department of Energy and can be downloaded from Sci. Technol., 14, 23 (1999).

http://www.nersc.gov/linwang/PEtot/PEtot.html.

[37] O. Madelung, M. Schulz, eds. Numerical data and functional relationships in science and technology. New series. Croup III: crystal and solid state physics. Semiconductors. Suppl References and extens v. III/17. Intrinsic properties of group IV elements [1] L.J. Sham, M. Schlter. Phys. Rev. Lett., 51, 1888 (1983). and IIIV, IIVI and IVII compounds (Springer Verlag, [2] P. Lawaetz. Phys. Rev. B, 4, 3460 (1971). Berlin, 1982) v. 22a.

, 2005, 39, . 188 S.Zh. Karazhanov, L.C. Lew Yan Voon [38] N.K. Abrikosov, V.B. Bankina, L.V. Portskaya, L.E. Shelimova, E.V. Skudnova. Semiconducting IIVI, IVVI, and VVI compounds (Plenum, N.Y., 1969).

[39] O. Madelung, M. Schulz, H. Weiss, eds. Numerical data and functional relationships in science and technology. New series. Group III: crystal and state physics. Semiconductors.

Physics of group IV elements and IIIV compounds (Springer Verlag, Berlin, 1982) v. 17a.

[40] O. Madelung, ed. Data in science and technology.

Semiconductors: other than group IV elements and IIIV compounds (Springer Verlag, Berlin Heidelberg, 1992).

[41] S.-H. Wei, A. Zunger. Phys. Rev. B, 39, 3279 (1989).

[42] H. Fu, A. Zunger. Phys. Rev. B, 55, 1642 (1997).

[43] M.L. Cohen, J.R. Chelikowsky. Electronic structure and optical properties of semiconductors (Springer Verlag, Berlin, Heidelberg, 1988).

[44] H. Fu, L.-W. Wang, A. Zunger. Appl. Phys. Lett., 73, (1998).

[45] N. Cavassilas, F. Aniel, K. Boujdaria, G Fishman. Phys. Rev.

B, 64, 11 5207 (2001).

[46] D.M. Wood, A. Zunger. Phys. Rev. B, 53, 7949 (1996).

[47] L.-W. Wang, J. Kim, A. Zunger. Phys. Rev. B, 59, 5678 (1999).

.. , 2005, 39, .

Pages:     | 1 |   ...   | 2 | 3 ||



2011 www.dissers.ru -

, .
, , , , 1-2 .