WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 ||

D(t + t0) - u -u (x, t) = + (z) — функция ошибок. u Теперь, зная явный вид функции µ(x, t) и (x, t) из — относительное пересыщение по фазе, 0 — начальуравнений (4) и (5), получим выражение для суммарного ное относительное пересыщение. В качестве ”времени” потока на поверхности необходимо выбрать величину = ln(X2), которая при 1 d больших t имеет однозначную связь со временем. Переg(x, t) = gg(x) - I(x, t), 2 dt писав в новых переменных выражение (22), получим при больших временах t p 3 u p 1 =e ( + ) du, (16) (x+x0)2k(M0 -M)2 exp - ds(u) 2 D(t+t0) g(x, t) =. (11) D(t + t0)(M0 + 4k)3/где 32/3 1/4(1/3) x + xЗапишем уравнение баланса массы на подложке [8] = ;

DCi 0.665 U3/t u g(x, t) = f (R, x, t)R3(x, t)dR, (12) du = = ln(2 - u)2 - - 2 - ln 4;

0 g(u) 2 - u подставим в него значение потока (11) и, интегрируя ( + ) — некоторая произвольная функция, подлежалевую часть уравнения (12), получим щая определению из условия сохранения вещества;

2k(M0 - M)2 1 (x + x0)Ei (M0 + 4k)3/2 2 D(t + t0) gs(u) = (u -2)2, 2u (x + x0)2 32/3 DCi 0.665U3/p — принимает значения p = 2, 3, 4 в соответствии с - Ei - + t D(t0) 2 1/4(1/3) x + xмеханизмом транстпорта массы в системе [7].

Мы привели уравнение (15) к виду (16), который соответствует уравнению, решенному в работе [7], с = f (R, x, t)R3(x, t) dR, (13) той только разницей, что в данном случае зависит от пространственной координаты x. Отметим, что, преобразовав выражение (2) к виду ggtn-1, мы увидим, где Ei (z) — интегральная показательная функция.

что это соответствует формально n = 1. Как показано в Рассмотрим теперь два физически важных предельных работе [8], источники вещества являются затухающими случая.

при n < 3/p, при n 3/p источники называются 1. Пусть в рассматриваемом интервале пространства и незатухающими. Таким образом в рассматриваемых нами времени между членами в левой части выражения (14) стационарных условиях (т. е. n = 1) источник может действует следующее соотношение:

быть как затухающим при мезанизме транспорта массы, соответствующего p = 2, так и постоянным при p = 2k(M0 - M)2 1 (x + x0)2 (x + x0)Ei - -Ei или нарастающим при p = 4. Следовательно, при (M0 + 4k)3/2 2 D(t + t0) D(t0) нанесении различных веществ одни и те же условия проведения процесса могут привести к образованию 32/3 DCi 0.665U3/ t (14) принципиально разных структур, от монодисперсных (в 2 1/4(1/3) x + xЖурнал технической физики, 1998, том 68, № Механизмы и кинетика начальных стадий роста пленок, выращиваемых методом химического... данной точке пространства) при p 3 до полидис- где n для рассматриваемого стационарного случая равно персных с распределением по размерам, которое будет единице n = 1.

получено ниже. Рассмотрим здесь только случай p = 2, При нестационарном процессе n будет отличаться от единице. На рис. 2, a представлен вид функции f (R, x, t) остальные варианты могут быть получены по аналогии в данный момент времени t.

в соответствии с результатами работы [8] и настоящим Степень заполнения подложки в случае полусферичеисследованием.

ских островков будет иметь вид Не приводя промежуточных вычислений, выпишем теперь основные зависимости, характеризующие островко4GpgCpn2(Apt)1-1/p вую пленку на стадии оствальдовского созревания при ее (x, t) =. (20) (3/p - 1) x + xвыращивании методом газофазного осаждения и условии, 2. Рассмотрим теперь случай, когда поток вещества что распределение компонента в основном определяется из газовой фазы на подложку мал по сравнению с гидродинамическим подводом вещества из газовой фазы.

диффузией компонентов по поверхности подложки (15).

Итак, в этом случае критический радиус островков будет p p Такой случай может реализоваться, например, при маRcr = Rcr0+Apt, где Rcr0 — критический радиус островков лой концентрации компонентов примесей в толще газа к моменту начала процесса оствальдовского созревания, (см. (2)). При этом уравнение (14) примет вид а значения коэффициента Ap можно найти в работе [7].

Например, при p = 2 коэффициент A2 будет 2k(M0 - M)2 1 (x + x0)2 (x + x0)Ei - -Ei (M0 + 4k)3/2 2 D(t + t0) D(t0) Vm1()() A2 =.

KBT = f (R, x, t)R3(x, t) dR. (21) Средний радиус островков меняется во времени как R(x, t) =Cpn(Apt)1/p, (17) Рассмотрим выражение в левой части при больших t.

Заменим интегральную показательную функцию ее пригде uближенным значением при больших временах t s Pp(u)udu 2k(M0 - M)2 t + t0 1 (x + x0)Cpn =, ln - ln u(M0 + 4k)3/2 2 D s Pp(u)du u0 — запирающая точка; при p = 2 значение u0 = 2 = f (R, x, t)R3(x, t) dR, (22) (см [7]).

Число островков меняется в соответствии с законом где = 1.781... — постоянная Эйлера.

Приравняем левую часть уравнения нулю и, решая Ggp Ng(x, t) =, полученное уравнение относительно x, получим правую (3/p - 1)(Apt)3/p-1 x + xграницу области пространства, в которой происходит p-процесс оствальдовского созревания (рис. 1) 32/3 0DCi 0.665 U3/4VmRk0 Nn Ggp = 2 1/4(1/3)Ap 2D(t + t0) xb = - x0.

u e-(3/p-n) (u)u3du, (18) Таким образом, процесс оствальдовского созревания (dup-1/d )s 0 ансамбля островков происходит в области x0 < x < xb, uкоторая расширяется с течением времени. Перейдя в где (u) = du/(dup-1/d )s [7]; Nn — число мест уравнении (22) к переменным u и, имеем адсорбции на единице площади поверхности; 0 —ко- 2k(M0 - M)2 2D ln эффициент, определяемый в соответствии с [7]. (M0 + 4k)3/2 (x + x0)Функция распределения островков по размерам в обp щем случае будет иметь вид 3 u p = e ( + ) du - (23) N(x, t) gs(u) f (R, x, t) = Pp(u). (19) Rcr(t) и, устремляя r, получим Вид функции Pp(u) приведен в работе [1,6,7]. Напри2k(M0 - M)2 2D мер, при p = ln (M0 + 4k)3/2 (x + x0) 3-2n 3-2n p 2e u exp - 1-u/u < 2, 3 uP2(u) = p (2 - u)2+2(3/2-n) = e ( + ) du. (24) gs(u) 0 u 2, 8 Журнал технической физики, 1998, том 68, № 116 Д.А. Григорьев, С.А. Кукушкин Рис. 2. Зависимость функции распределения островков fp(R, x) от радиуса R и координаты x. a — эволюция ансамбля островков определяется гидродинамическим источником вещества, b — эволюция ансамбля островков определяется диффузией вдоль подложки.

Из уравнения (22) видно, что оно формально подобно Обсуждение результатов уравнению баланса массы в работе [7], поэтому, не На основании проведенного анализа можно сделать приводя промежуточных выкладок, выпишем сразу все выводы, важные для понимания кинетики образования основные параметры островковой пленки в зависимости пленки при газофазном осаждении и методов управления от пространственной и временной координаты. Средний ее ростом. Рассмотрим вначале случай роста островков радиус островков в этом приближении определяется выражением (17), а число островков на единице поверх- новой фазы, контролируемого поступлением вещества из ности равно газа-носителя (15). Отметим, что мы рассмотрели про стейший стационарный случай, а в большинстве работ по 2D Gpd ln гидродинамике процесса газофазного нанесения рассма(x+x0)Nd(x, t) =, (25) триваются нестационарные процессы в трехмерном про3/p(Apt)3/p странстве. Решение в этом случае проводят численными где методами. Для рассмотрения кинетики роста пленки в p-20(M0 - M)2VmRk0 Nn соответствии с предыдущим разделом настоящей работы Gpd = (M0 + 4k)3/можно воспользоваться следующим методом.

В работах [6–8] было показано, что при больших uзначениях времени любые внешние источники могут e-(3/p-n) (u)u3du.

быть мажорированы полиномами вида ggtn-1, где gg — (dup-1/d )s мощность стока, n —любое число n > 0. Поэтому в случае рассмотрения нестационарного процесса поФункция распределения в этом случае будет иметь лученную численную зависимость потока вещества на вид (19), в котором в выражении для Pp(u) n = 0. Вид этой функции приведен на рис. 2, b. подложку [3,4] необходимо мажорировать функцией вида Степень заполнения подложки островками изменяется gg(x, t) =gg(x)tn-1 и проводить рассмотрение эволюции со временем по закону островковой пленки на поверхности согласно методу, предложенному выше. Для рассмотренного нами стацио4Gpd 2D нарного потока можно отметить следующие особенности (x, t) = ln. (26) 3/p(Apt)1/p (x + x0)эволюции островковой пленки. Если в системе реалиЖурнал технической физики, 1998, том 68, № Механизмы и кинетика начальных стадий роста пленок, выращиваемых методом химического... зуется механизм транспорта массы, соответствующий Список литературы p = 2 [8], то в каждой точке на подложке частицы будут [1] Кукушкин С.А., Слезов В.В. Дисперсные системы на иметь широкий спектр размеров (рис. 2). Степень заполповерхности твердых тел (эволюционный подход): Механения подложки при этом растет, а время образования низмы образования тонких пленок. СПб.: Наука, 1996.

сплошной пленки в зависимости от координаты может 312 с.

быть оценено по выражению [2] Разуваев Г.А., Грибов Б.Г. и др. Металлорганические p соединения в микроэлектронике. М.: Наука, 1972. 479 с.

1 (3/p - 1) x + x0 p-[3] Воробьев А.Н., Гарибин Е.А. и др. // Высокочистые tmid g =. (27) Ap 4GpgCвещества. 1996. № 3. С. 41–52.

pn [4] Garibin E.A., Mironov I.A., Khorushnikov S.E., VoroПользуясь выражением (27), можно оценить время b’ev A.N. // Materials Science & Engineering. B. 1996. Vol. 39.

P. 8–14.

проведения процесса до образования сплошной тонкой [5] Жидков А.Б., Кукушкин С.А., Смирнов Е.П., Денисопленки в данной точке образца. В нестационарном случае ва А.Т. // Поверхность. 1990. № 4. С. 71–76.

при n 1/p, согласно [8], образуется пористая несплош[6] Kukushkin S.A., Osipov A.V. // Progress in Surf. Sci. 1996.

ная пленка. Отметим, что если рассматривается система Vol. 51. N 1. P. 1–107.

с островками различного состава, то будет изменяться [7] Кукушкин С.А. // ФТТ. 1993. Т. 35. Вып. 6. С. 1582–1596.

по пространству не только размер, но и состав остров[8] Кукушкин С.А. // ФТТ. 1993. Т. 35. Вып. 6. С. 1597–1608.

ков, так как между этими характеристиками существует связь [7,8]. Если в системе реализуется механизм переноса вещества, соответствующий p = 3.4, то это будет соответствовать незатухающим источникам вещества4 и пленка будет иметь более мелкодисперсную структуру с практически монодисперсным распределением по размеру и составу островков [8]. В этом случае если поток из газовой фазы слабо зависит от x, то возможно получение пленки, однородной по структурному и фазовому составу на достаточно большой части подложки. В случае, если поток вещества, поступающего на подложку из газовой фазы, мал и вещество будет перераспределяться за счет процесса диффузии вдоль подложки, формально источника вещества нет, степень заполнения подложки падает и как результат будет расти несплошная пленка и островки будут распределены по размерам согласно закону (19). Если растущая пленка состоит из островков различного состава, то, кроме того, пленка в этом случае будет иметь распределение островков по составам и как следствие неоднородную по пространству структуру.

Укажем, что управление эволюцией ансамбля островков требует предварительного определения механизма роста выбранного вещества на данной подложке. Подробно метод получения этих данных рассмотрен в работе [8].

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (код № 96-03-32396).

При рассмотренном нами варианте стационарного потока. При исследовании нестационарного процесса необходимо провести решение и анализ в соответствии с [7,8] и настоящей работой.

Журнал технической физики, 1998, том 68, №

Pages:     | 1 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.