WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 | 3 |
Физика и техника полупроводников, 2004, том 38, вып. 1 О статистике и кинетике рекомбинации в полупроводниковых наноструктурах © А.В. Саченко, Ю.В. Крюченко¶ Институт физики полупроводников Национальной академии наук Украины, 03028 Киев, Украина (Получена 18 марта 2003 г. Принята к печати 16 апреля 2003 г.) Предложен новый подход, объясняющий наблюдаемые особенности рекомбинации в полупроводниковых наноструктурах. Помимо канала излучательной экситонной рекомбинации учтен также канал безызлучательной оже-рекомбинации экситона с участием локального интерфейсного центра. Рассмотрены статистика и кинетика рекомбинации в полупроводниковых нанокристаллах для предельных случаев низкой и высокой концентрации локальных интерфейсных центров. Проанализирован также случай низких уровней возбуждения, когда статистический подход к описанию рекомбинации в отдельных нанокристаллах становится неприменимым. Показано, что наличие указанного канала безызлучательной оже-рекомбинации экситонов позволяет объяснить как линейную зависимость интенсивности фотолюминесценции от уровня возбуждения, так и ее низкий внутренний квантовый выход.

1. Введение и электронно-дырочной. Такой подход используется в ряде работ [2,4,5,12].

До последнего времени считалось, что в области В последние годы появилось достаточно большое количество работ (см., например, [1–8], в которых фото- достаточно низких уровней возбуждения в полупроводниковых НК фотолюминесценция связана с излулюминесценция (ФЛ) полупроводниковых наноструктур чательной рекомбинацией экситонов, в то время как (НС) и нанокристаллов (НК) объясняется механизмом безызлучательная рекомбинация идет с участием свободэкситонной излучательной рекомбинации. Особой попуных электронно-дырочных пар на дефектах интерфейса лярности экситонного механизма фотолюминесценции нанокристаллов. В настоящей работе предложена другая способствовало то обстоятельство, что при уменьшении модель рекомбинации, согласно которой и безызлуразмеров НК энергия связи экситона и сила осциллячательная рекомбинация имеет экситонный характер, тора экситонного перехода существенно увеличиваются а ее механизм заключается в оже-распаде экситонов не только вследствие квантового ограничения, но и на локальных центрах интерфейса. Проанализированы благодаря эффекту „диэлектрического усиления“ [6–12].

особенности статистики и кинетики рекомбинации как Этот эффект усиления кулоновского притяжения между экситонов, так и свободных электронов и дырок для дыркой и электроном в полупроводниковом НК, окрупредельных случаев больших и малых плотностей ложенном диэлектриком, связан с перераспределением кальных состояний интерфейса. Показано, что ряд эксэлектрического поля благодаря значительно меньшему периментальных данных при использовании предложензначению диэлектрической проницаемости диэлектрика ной в данной работе модели находят более простое и по сравнению с полупроводником.

непротиворечивое объяснение, чем в других моделях.

Как показывают расчеты, с понижением размерности, Конкретные оценки и расчеты проведены с использот. е. при переходе от квантовых ям к квантовым нитям ванием параметров, характерных для кремниемых НК, и квантовым точкам при фиксированной толщине НК, хотя полученные в работе результаты имеют достаточно энергия связи экситона и сила осциллятора экситонного общий характер и могут быть использованы и при перехода возрастают [10,12].1 В результате в одноописании свойств наноструктур и нанокристаллов на мерных и нуль-мерных НК экситонный механизм ФЛ основе других полупроводников.

может доминировать по сравнению с излучательной зона–зонной рекомбинацией даже при комнатных температурах.

2. Модель рекомбинации Поскольку возбуждение ФЛ в полупроводниковых В данной работе для объяснения закономерностей понанокристаллах происходит при освещении светом из ведения фотолюминесценции в кремниевых НК привлеобласти межзонного поглощения, при теоретическом описании экситонной ФЛ в них нужно исходить из нали- кается механизм безызлучательной оже-рекомбинации экситона с участием глубокого локального центра. Для чия двух связанных между собой подсистем: экситонной случая кристаллического кремния этот механизм ана¶ E-mail: div47@isp.kiev.ua лизировался в работах [13–15], где было показано, Для квантовой точки об экситоне можно говорить лишь условно, что в ряде случаев именно он и определяет величипоскольку там он не является подвижной квазичастицей. Суть однако ну эффективного времени жизни свободных носителей в том, что и в этом случае кулоновское притяжение существенно перенормирует электронно-дырочный спектр. заряда. Сущность этого механизма заключается в том, О статистике и кинетике рекомбинации в полупроводниковых наноструктурах что экситон безызлучательно распадается на объем- и для коэффициента поглощения света 104 см-ном локальном центре с выбросом горячего электрона в квантовой точке диаметром 3 нм генерируется всего (или дырки) в соответствующую зону. Как показано одна электронно-дырочная пара, которая затем связывав [13,14], вероятность экситонного оже-процесса в кри- ется в экситон. Если на интерфейсе данной квантовой сталлическом кремнии существенно превышает вероят- точки имеется хотя бы один локальный уровень, то ность многофононной рекомбинации вследствие того, безызлучательное время распада экситона благодаря что локальная плотность носителей заряда в экситоне, оже-процессу может оказаться весьма малым. По мере определяемая его боровским радиусом, достаточно вы- увеличения числа локальных интерфейсных уровней сока (порядка 3 · 1018 см-3). В НК характерные размеры безызлучательное время жизни экситона будет еще экситона вследствие эффектов квантового ограничения меньшим. Излучать будут только те НК, в которых и диэлектрического усиления существенно меньше вели- излучательное время экситонной рекомбинации меньчины боровского радиуса объемного экситона. Поэтому ше безызлучательного. Чем больше в среднем число в нанокристаллах можно ожидать дальнейшего увеличе- локальных интерфейсных уровней в НК, тем меньшим ния вероятности экситонного оже-процесса. Кроме того, будет число излучающих квантовых точек. Поэтому инпо мере уменьшения размеров НК в экситонный оже- тенсивность фотолюминесценции в НС при увеличении процесс вовлекаются не только объемные, но и ин- концентрации поверхностных уровней должна уменьтерфейсные локальные центры (вследствие увеличения шаться; должно уменьшаться также и время затухания степени перекрытия волновых функций экситона и этих ФЛ. Именно так все и происходит в эксперименте [4].

центров). Более того, в квантовых нитях, а особенно в Наличие локальных интерфейсных уровней (точнее, квантовых точках размером менее 5 нм, определяющи- соотношение между количеством свободных электронов ми должны становиться именно интерфейсные центры, и (или) экситонов и количеством интерфейсных ценпоскольку глубокие объемные центры при столь малых тров) существенно определяет механизм рекомбинации размерах могут вообще отсутствовать. в НК и в том случае, когда выполнены неравенства К сожалению, микроскопическая теория экситонной N, Nx 1. Так, например, в случае I, когда количество оже-рекомбинации в квантовых нитях и квантовых точ- локальных центров Nt в НК значительно больше Nx, ках на данный момент не развита, поэтому в насто- сценарий процессов рекомбинации выглядит следуюящей работе мы будем исходить из предположения, щим образом. Вначале происходит остывание горячей что в указанных объектах, как и в кристаллическом электронно-дырочной пары, а затем ее связывание в кремнии, рассмотренный выше механизм может приво- экситон. В дальнейшем идет конкуренция между двумя дить к реализации малых характеристических времен процессами: процессом излучательной рекомбинации экбезызлучательной рекомбинации (меньших времен из- ситона и процессом его безызлучательного оже-распада лучательной экситонной рекомбинации). В квантовых на локальном центре с параллельным выбросом горяточках, кроме того, из-за дискретности энергетического чего электрона (или дырки) в соответствующую зону.

спектра время экситонной безызлучательной рекомби- Затем следуют остывание горячих носителей и, наконец, нации может быть осциллирующей функцией диаметра рекомбинация электрона или дырки по многофононному квантовой точки, что дает более широкие возможности механизму с большим характеристическим временем n.

для объяснения экспериментальных результатов. При установлении стационарного режима после включеНаконец, мы будем предполагать, что имеет место ния освещения вначале происходит изменение заполнеследующая иерархия процессов релаксации. Наименьши- ния локальных уровней электронами, в результате чего ми являются времена остывания генерированных светом потоки электронов и дырок с уровней в разрешенные электронно-дырочных пар и их связывания в экситоны. зоны и обратно практически выравниваются. В этом Далее идут времена безызлучательной и излучательной случае концентрация экситонов будет очень мала по рекомбинации экситонов, а наибольшим является вре- сравнению с концентрацией свободных электронов (или мя многофононной рекомбинации электронов (и (или) дырок), а интенсивность экситонной фотолюминесцендырок). ции соответственно будет крайне низка. При возбуОтметим также, что феноменологические уравнения ждении короткими импульсами, когда стационарный ренепрерывности, позволяющие описывать соотношения жим за время импульса не устанавливается, экситонная между концентрациями электронов, дырок и экситонов люминесценция будет затухать с характеристическим в НК, можно использовать лишь тогда, когда работает временем x, равным полному времени рекомбинации статистика, т. е. при условии N, Nx 1, где N и Nx — экситонов, а концентрация свободных электронов (или количества электронов и экситонов в НК. дырок) вначале будет нарастать с тем же временем x, Вместе с тем зачастую для используемых в экспери- а затем уменьшаться с большим характеристическим менте уровней возбуждения реализуется противополож- временем n.

ное условие N, Nx 1. Так, например, при возбужде- В случае II, когда выполнены неравенства N, Nx 1, нии импульсным лазером с интенсивностью возбужде- но в то же время имеет место неравенство Nt Nx, прония I = 1022 см-2с-1, длительностью импульса поряд- цесс рекомбинации в НК происходит следующим обрака 10-8 с, фокусировкой излучения на площади 1 мм2 зом. После связывания остывшей электронно-дырочной Физика и техника полупроводников, 2004, том 38, вып. 104 А.В. Саченко, Ю.В. Крюченко пары в экситон параллельно происходят излучатель- экситонов и электронов в НК, т. е. их количества, отненая рекомбинация экситона и его безызлучательная сенные к объему НК.

оже-рекомбинация с участием глубокого центра. Кроме Согласно сказанному выше, при сравнительно низких того, не связавшиеся в экситоны электронно-дырочные интенсивностях возбуждения, соответствующих, наприпары рекомбинируют безызлучательно по многофонон- мер, использованию азотного лазера, для квантовых ному механизму. Специфика безызлучательной оже- точек применять статистический подход при рассмотрекомбинации экситона с участием локального центра рении рекомбинации нельзя, поскольку в этом случае в данном случае заключается в следующем. Вначале выполняется критерий N, Nx 1. Его можно применять происходит изменение заполнения локального центра, лишь в случае достаточно высоких уровней возбуждеблагодаря чему вероятности оже-процессов с выбросом ния, когда существенно возрастает роль оже-процессов горячей дырки и горячего электрона выравниваются.

высших порядков, приводящих к сублинейной зависиДалее процесс рекомбинации идет таким образом, что мости интенсивности фотолюминесценции от уровня одновременно на центре распадаются два экситона с вы- возбуждения (см., например, [4]).

бросом горячего электрона и горячей дырки. Собственно При сравнительно низких уровнях возбуждения стаговоря, на этом процесс безызлучательной экситонной тистический подход может быть использован лишь для рекомбинации с участием локального центра и заканчиквантовых ям и квантовых нитей. В последнем случае вается. Остывшая пара опять может связаться в экситон удобно оперировать с концентрациями, нормированныи принять дальнейшее участие в рекомбинации.

ми на единицу длины [12]. Запишем систему уравнений, Соотношение между концентрациями экситонов и описывающих кинетику и статистику рекомбинации в свободных электронно-дырочных пар в рассматривае- квантовых нитях с использованием таких нормированмом случае зависит от значений характеристических ных концентраций при достаточно больших отклонениях времен x и n, интенсивности возбуждения I, темпеот равновесия:

ратуры T и энергии связи экситона Ex. Так, по мере dnx понижения температуры T и увеличения энергии связи -= 1np - 2nx - xr nx - Gnntnx - Gp ptnx, (1) экситона Ex концентрация экситонов возрастает по срав- dt нению с концентрацией электронно-дырочных пар, что dn и используется как одно из доказательств экситонной = -1np + 2nx + Gnntnx - Cnnpt + d2I, (2) природы люминесценции в кремниевых НС. dt dnt = -Gnntnx + Cnnpt + Gp ptnx - Cpnt p, (3) dt 3. Статистика и кинетика рекомбинации n = p + pt, (4) Проведем расчет стационарных концентраций эксигде n, nx, p и nt — концентрации электронов в тонов и свободных носителей заряда, а также времен зоне проводимости, экситонов, дырок в валентной зоне релаксации экситонов и свободных носителей заряда для и электронов на локальных центрах соответственно;

случаев I и II для НК с конкретными параметрами и pt = Nt - nt, Nt — концентрация локальных центров, покажем, каким образом в рамках используемой модели — эффективный коэффициент поглощения, учитырекомбинации можно объяснить ряд экспериментальных вающий многократное отражение света, I —интенсиврезультатов для кремниевых НС.

ность освещения, 1 и 2 — вероятности связывания Вначале оценим поверхностную концентрацию ло- пары в экситон и диссоциации экситона, xr — излукальных уровней на интерфейсе, при которой в кван- чательное время жизни экситона, Gn и Gp — коэффитовой нити (квантовой точке) имеется хотя бы один ло- циенты оже-процессов распада экситона на локальном кальный центр. Все оценки и дальнейшие численные рас- центре с выбросом горячего электрона и горячей дырки, четы проведены для случая, когда диаметры квантовой Cn и Cp — коэффициенты захвата электрона и дырки нити и квантовой точки d равны 2.5 нм, длина квантовой локальным центром с участием многофононных процеснити h = 10 мкм. Для нахождения требуемой концентра- сов. Разумеется, величины 1 и 2, xr, Gn, Gp, Cn и Cp ции можно воспользоваться условием NSS = 1, где NS — являются функциями формы и размеров НК, а также величина поверхностной концентрации центров, а S — температуры. Установление их функциональных зависиплощадь поверхности квантовой нити или квантовой мостей является задачей микроскопической теории.

Pages:     || 2 | 3 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.