WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 ||

вичного электрона. Как показано в [10], искажение В рамках кластерной модели передачи возбуждений приведенной оценки не превышает 10%, если энергия можно объяснить зависимости скорости прихода предпервичных электронов меньше 500 keV и толщина стевестника и частоты его высокочастотных осцилляций от нок стеклосфер находится в диапазоне 1-10 µm. Роль объемной концентрации наполнителя. Согласно [12], скорость прихода предшественников Cs ( - ) теплопроводности при характерных временах 100 ns = облучения и разгрузки стеклосфер мала и в расчетах не с показателем = (D - 1), где D — размерность учитывалась. Эффект теплопроводности между зернами связности, = 0.88. Данные таблицы позволяют наполнителя и связующего в гетерогенном материале оценить D = 1.7 для случайного кластера с = 0.мог бы проявиться в появлении остаточного импульса и D = 1.5 для кластера на гексагональной решетке с давления [9], нами здесь не рассматриваемого.

= 0.2. Эти значения близки к размерности скелета При численном моделировании прохождения по стекластера Db = 1.68 [12], по которому в основном и клосферам и связующему стивлона импульсов давления, передается возбуждение.

вообще говоря, следует использовать трехмерные волДовольно естественным представляется связать приновые уравнения [15] с кусочно-постоянными коэффироду высокочастотных осцилляций предвестников с пециентами, характеризующими наполнитель и связующее реотражением импульса давления в мертвых концах кластера. При каждом таком отражении полярность возбуждения меняется, а время одного биения, вероятно, связано с пространственной длиной корреляции кластера. Согласно [12], ( - )-. Оценивая = по данным табл. 1, получаем = 0.8, близкое к 0.88 [12] значение для случайного кластера, и = 0.для кластера на гексагональной решетке.

Численные расчеты и их обсуждение Детальная структура предвестников зависит от реализации случайного кластера. Для того чтобы выявить общие черты предвестников и определить влияние различных параметров, характеризующих композиционный материал, было проведено численное моделирование экспериментов. Это моделирование включало в себя численные расчеты случайной структуры гетерогенного материала, моделирование поглощения в нем электронного излучения, зависящего от времени (рис. 2), собРис. 6. Экспериментальные и расчетные интерферограммы ственно переноса и регистрации генерируемых импульдвижения тыльной стороны стивлона. Параметры электронного сов давления. Необходимость большого объема вычисли- пучка указаны в табл. 2.

Журнал технической физики, 1997, том 67, № Генерация предвестника импульса давления в материалах, обладающих кластерной структурой продольная скорость звука и коэффициент Грюнайзена материала стеклосфер с вольфрамовым покрытием f = 3.5g/cm3, Cf = 5km/s и f = 1.5 соответственно.

Таким образом, отношение акустических жесткостей материала стеклосфер и связующего каучука весьма велико ( 17).

В численных расчетах определялась зависимость скорости движения V (t) тыльной стороны поверхности облученного пучком электронов стивлона. Для сравнения с экспериментом эта скорость пересчитывалась в сигнал интерференции sin(V (t)/VL +0), где VL =26 m/s — период интерференции; 0 — начальная фаза, определяемая по экспериментальной интерферограмме. В расчетах учитывалась конечная полоса пропускания фотоэлектронного умножителя, определенная по экспериментальному пропусканию прямоугольного импульса и равная 20 ns [8].

Параметры и результаты расчетов сведены в табл. 2 и рис. 6–10. в таблице x — толщина образца, —объемное содержание стеклосфер, 0 — начальная фаза интерференции, Tb — длительность импульса электронного ускорителя, U0 — амплитуда энергии в спектре электронов, J0 — амплитуда плотности тока электронов, CV — скорость прихода предвестника, — характерное время Рис. 7. То же, что и на рис. 6.

стивлона. Акустическое приближение справедливо по крайней мере для описания предвестника основного импульса давления, поскольку амплитуда напряжений в предвестнике была в экспериментах заведомо меньше предела текучести Y0 (Y0 1kbar).

При отражении акустических волн от границ стеРис. 8. То же, что и на рис. 6.

клосфер и при их распространении по поверхности стеклосфер происходит изменение их поляризации. Поскольку расположение стеклосфер в стивлоне случайно, то тензор давления изотропизуется. Все это позволило упростить систему акустических уравнений [15] до одного гидродинамического волнового уравнения с источником (тепловыделением), описывающего изотропное давление. Часть коэффициентов, входящих в это уравнение, оценена экспериментально, а именно плотность связующего каучука c = 1.01 g/cm3, ее продольная скорость звука и коэффициент Грюнайзена: Cc = 1km/s и c = 0.82 соответственно. Остальные коэффициенты оценены по данным для обыкновенного стекла и вольфрама [16] и химическому составу стивлона: плотность, Рис. 9. То же, что и на рис. 6.

Журнал технической физики, 1997, том 67, № 24 Б.А. Демидов, В.П. Ефремов, М.В. Ивкин, И.А. Ивонин, В.А. Петров Таблица 2.

№ рисунка x, mm, % 0, grad Tb, ns U0, keV J0, A/cm2 CV, km/s, ns 6 3.0 32 -10 75 310 500 3 7 3.0 32 225 75 310 100 3.5 8 4.65 41 10 50 300 400 4.9 9 4.65 41 0 50 300 375 4.5 10 4.1 41 0 50 300 250 3.9 мелкомасштабных осцилляций. На рисунках сплошной Несмотря на столь случайное поведение амплитуд линией показана экспериментальная интерферограмма, осцилляций, сравнение между собой численных интерштриховой линией — расчетная интерферограмма и ферограмм позволило подтвердить высказанные в предыдущем разделе гипотезы об общих чертах предвестников.

пунтиром — нормированная скорость движения тыльной В табл. 2 приведены результаты измерения скорости стороны стивлона в зависимости от времени начала предвестников CV. Видно, что эти скорости связаны в облучения.

основном лишь с концентрацией наполнителя.

Прежде всего отметим, что как в расчетах, так и В табл. 2 приводятся расчетные времена высокочав экспериментах в стивлоне с объемным содержанием стотных осцилляций. Они также зависят лишь от констеклосфер = 24% предвестника обнаружено не было.

центрации наполнителя в отличие от низкочастотных Это действительно можно объяснить тем, что значение осцилляций. Численно была выяснена природа этих низ = 24% близко к пороговому значению = 20% кочастотных осцилляций — она связана с конечностью протекания по кластеру в задаче узлов на гексогональной зоны энерговыделения, нестационарностью облучения и решетке [11], топологически схожей с рассматриваемой не характеризует кластер.

кубической объемно центрированной. Реализация же доВ заключение этого раздела отметим, что рассмотренстаточно мощного протекающего кластера с = 24% ный эффект появления предвестников основного импулькак экспериментально, так и численно маловероятна.

са давления носит общий характер. Необходимыми услоНачальная фаза осцилляций предвестника в расчетах виями возникновения предвестников являются достаточи экспериментах не обладала регулярностью. Например, но большая разница в скоростях звука наполнителя и на рис. 6, 8, 9 предвестник начинается с фазы сжатия, а на связующего (для разделения предвестника и основного рис. 7, 10 — с разрежения. Численные расчеты показали, импульса) и достаточно большая разница акустических что эти фазы действительно определяются переотра- жесткостей наполнителя и связующего (для меньшего жением волны давления в мертвых концах кластера. рассеяния возбуждений кластера в связующее).

Не обладают регулярностью и амплитуды последующих импульсов в предвестнике — их нарастание немонотонно Заключение (рис. 8), как и в экспериментах. Поэтому на рис. 6–проводится сравнение лишь похожих на экспериментальДействие высокоинтенсивных релятивистских имные по нарастанию амплитуды расчетных интерферопульсных электронных пучков позволяет исследовать грамм.

интересные явления отклика полимерных материалов, не описанные в литературе. А именно в полимерах с гетерогенными включениями в таких условиях проявляется осциллирующий предвестник основного импульса давления.

Экспериментальные результаты (регистрация интерферограмм возникающего при облучении движения тыльной поверхности материала) показали не только качественное, но и количественное согласие с результатами теоретического численного моделирования, проведенного в рамках перколяционной кластерной модели описания гетерогенного материала. В этой модели волны давления могут распространяться как по полимерной основе, так и по кластерам из зерен наполнителя. Получено качественное и количественное согласие времени прихода, периода осцилляций предвестника. Кроме того, сравнение теоретического и экспериментального моделирований позволяет непосредственно измерять критические коэффициенты теории перколяции: связанный с Рис. 10. То же, что и на рис. 6.

Журнал технической физики, 1997, том 67, № Генерация предвестника импульса давления в материалах, обладающих кластерной структурой размерами кластера показатель V, размерность связности скелета кластера Db и определяемый ими показатель скорости распространения возмущений.

Авторы выражают признательность Л.И. Рудакову и К.В. Чукбару за обсуждения и полезные замечания.

Работа выполнена при поддержке гранта РФФИ № 9502-06285a.

Список литературы [1] Фракталы в физике. Тр. VI Междунар. симпозиума по фракталам в физике: Сб. ст. / Под ред. Л. Пьетронелло, Э. Тозатти. М.: Мир, 1988.

[2] Будов В.В., Лукавова Р.С. // Тугоплавкие волокна и мелкодисперсные наполнители. М.: Изд-во НПО ”Стеклопластик”, 1990.

[3] Дрезин Ю.П., Дыхне А.М. // ЖЭТФ. 1972. Т. 63. Вып. 1(7).

С. 242.

[4] Чукбар К.В. // ЖЭТФ. 1995. Т. 108. Вып. 5(11). С. 1875.

[5] Демидов Б.А., Ивкин М.В., Петров В.А. и др. // Атомная энергия. 1979. Т. 46. С. 100.

[6] Goosman D.R. // J. Appl. Phys. 1975. Vol. 46. N 8. P. 3516.

[7] Perry F.C. // J. Appl. Phys. 1970. Vol. 41. N 12. P. 5017.

[8] Демидов Б.А., Ивкин М.В., Ивонин И.А., Петров В.А. // ЖТФ. 1995. Т. 65. Вып. 9. С. 56.

[9] Давыдов А.А., Лазурик В.Т. // Акуст. журн. 1972. № 5.

C. 705.

[10] Демидов Б.А., Ефремов В.П., Ивонин И.А. и др.

Взаимодействие сильноточного РЭП с композиционными материалами. Препринт ИАЭ. № 5419/11. М., 1991.

[11] Эфрос А.И. // Физика и геометрия беспорядка. М.: Наука, 1982.

[12] Соколов И.М. // УФН. 1986. Т. 150. Вып. 2. С. 221.

[13] Kanaya K., Okadama S. // J. Phys. D. 1972. Vol. 5. N 1.

P. 43.

[14] Аккерман А.Ф., Никитушев Ю.М., Ботвин В.А. Решение методом Монте-Карло задач переноса быстрых электронов в веществе. Алма-Ата: Наука, 1972.

[15] Ландау Л.Д., Лифшиц Е.М. Теория упругости. Теоретическая физика. Т. 7. М.: Наука, 1987.

[16] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.С. Мейлихова. М.: Энергоатомиздат, 1991.

Журнал технической физики, 1997, том 67, №

Pages:     | 1 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.