WWW.DISSERS.RU


...
    !

Pages:     | 1 | 2 || 4 | 5 |

dN t = N - N t t dt e t pe.

Meoo aaa paepoce (oy pee pye exece pe ea, o pe eo o eo) oo oaa, o:

= ' ' = e: - oe poopoaoc apee ca oe ceppoa. ec o apaep pae po oeca oco ep oy ceppoa opeeec acoc o aapaypoo oope o cooecy opya.

oyea oe a cooaa ceoo cepea, oop aac pacee Ni acoc o.

Peya cepea pecae a pcye 4, oope oaa aecey eoc oee eecx px cepee pacee. pcya 4 o, o p aax oxecx cocax ypee ee a cepc ooo a ceppoae ep ypaee oe oycae ooe paoopae pee: eeoc, aoe yeee, yeee c acee, epoeca eoc cocaa c eo o paaxa.

poeypa oa papeaec ye oopa ax ae apaepo, oope oecea peee oepyeo ypae c a paaxo oea cocaa. p o paec o ae eeoc papoca paepax ac o oe pee , eo, o papoc aec cea a.

paec ay poeypy peoeyec ea, coa ceyy oceoaeoc: cepeax ycox, oope aeo oac py o pya o oecy oco oy ceppoa ep opee apaep paceoo ypae:

.; aee, coy peoeoe oooe ypaee eo cpeo e ye cex poeyp oopaax Nt, cpoc p pe:

1 - Nmax = f();

2 - Nmin = f();

3 - (Nmax- Nmin) = f().

Taa poeypa e cooax ax peea a pc. oocex eax.

0 10 20 30 40 50 60 70 80 Bpe, Pc. 4. Peya ceoo cepea co ac, Ha pc.5 oe epecee px ec aee ep (), oopoe oeceae oopeeo acay cepcoc ae oc cepcoo cocaa. eo o aee, ooo a ceppoae ep, ceye ca oa, .. p ex poecc eopaao aaec, a p ox ee ac pacpaaec a oyee oepae apax oc cepcoo cocaa.

oce oo a oea poeypa ea ae, cooec c aoee a exao ceppoa (cece yap, poe aoec, aaooaycecoe oece pye), pac ae paece pe ocyece poecca, oope coco oece aeoe aee eecoo apaepa.

0,0,0,0,0,0,0,0,0,0,0 0,5 1 1,5 2 2,5 oaae ep,/p Nmin Nmax (Nmax-Nmin) Pc. 5. paeca poeypa oa oeca ep.

Hoppoae e 3.3. oyee aox yc ye poecc oye aox yc AB. Paccape opoc ee aoocx ooo o ooc AB paoy A ex pee paca (oyee aox yc). oaa yco ycoo pao AB a aoocx ooax c o pe aca ceapa aoo a oocx paoeo oeca AB ocoeoc paca a, coepaeo epy ay.

Pea aay e ecaeo cep oc oe epoex c c aoee apoeco ecaoapoc yaoc oy acoc payca aca ypo aoo a paoe oece AB c ope ocpy apaepa acoc o o-xecx xapaepc aoocoo ooa:

R q1 + (1 + ) f 8, r3 =, (3) nR h( - ) g n acoa pae aa poa aapaa; R payc aoo cep; oe eaeco oc; aocoepae; ooc o a; g ooc aoo a; q pacxo a; f acoa ycaox e; h coa oaoo o poopa oyopa.

Cpoc oa AB (pepaee pao aapaa a acocoo apeaa) aaec, ec payc aca ee payca poopa aapaa. Ta opao ycoe ycoo pao A-ex a aoocx ooax caoc epaeco r3 < Rr, e ropeeec o ypae (3). acae aox ypo oo poa cey epop:

a) yea payc aox ypo;

) ca acoy pae aa poa aapaa;

) yea coy oaoo ac poopa AB, .e. yea oa pa o epa poopa eo epep;

) yea acoy coee popee poopa caopa;

) yea pacxo oc (, o oe, yea aocoepae).

Pace o opye (3) oaae, o p aocoepa oee 0,01% o oey p cax aopx pox ycox ye aac cpoc oa cex AB, aep oaoo o poopa oopx oee 70 . o eopeec a aac cepeao a ocx pao ooc poopax paoopao ocpy. Te ca a oepea aeaoc oe (3) oe eopeecoo oxoa.

B c c e, o oypa A-AE c AB o ee pyoo oype aoee accoa eo ao oypa ooe pop aa epe o apyo o xpeoy ypy, poeeo yoee e pecoo aye ooo apya aepo d0 o ypoe oc (hkr).

Ooee cepeax ax poo o eco pepao acoc :

hkr/d0 = K Frn, e: K, n pece oe;

Fr = u2/(gd0) pep pya;

u copoc oc poo apye.

B ax cepeax, p paoe AB o ee pyoo oype, aeo, o pop aa ooc aapaa epe xpeo yp ocaec pepa ypaee a:

2, hkr u = 0,0177, dgd oop peoeyec ooac p poepoa A-AE c AB o ee pyoo oype o ea popa aa Aaapa epe xpeo yp.

Ocyeceo cepeao-eopeecoe cceoae poecca oye aox yc ocpeco AA. aaa cocoa opeee cpeeo paepa ae aee paca, ec o eycooc pyc xoo ac a cooy oepxoc cpy opeee epooc xoe ac a aea paca.

Be eepoa ye aeo, ec xo oa aca c epooc pao 1 poe epe ceee oa cpy p yco, o a pe ae t epe ce ceee cpy poe X ac.

Bepooc xoa ac cee oa (Pk) opeec opyo Sk Pk (t) = XPx (t), (4) Sc e Sk, Sc oa oepeoo cee oa cpy, cooeceo.

coe aoc ac a poecc paca cooecye paecy Pk(t)=1. Toa a o eycooc cae pao c = u0 (5) poeyo pee ey oceoae xoa yx ac ceee oa. y ey oo opee coooe (4) c yeo Pk(t)=1:

X Sk (t) 1 = X e-t (6).

Sc X! B o ypae a eecx: t X. Bey X opee ceyeo coopae. Bpe e e pee ae t, e Px(t) e coey acyy, .e. e c oee epo coe ee eo. Haoee epooe co ac, epeocoe ooo a pe ye co, opeeeoe ycoe: [dPx(t)/dX] = 0. oceee, a oaao e, po ypae (5). oca o paee (6) ae X! a eo paoee o Cpy: X! = XXeX(2X)1/2, oy 1 1 2 X e + X - e Px ( ) = (7) 2X oca o paee (4) cea ecoe peopaoa, oy aee X, oeceaee acy epooc Px(t) Pk(t).

oyey oe paca oc c poeepoe e eoo ceoo cepea poep p pacxoax oc 0,5; 1,0 1,5 / (o cooecye o pacxoa aopaopx AB epe oy pope caopa), coepax 3% ac. ac epo a c paepa 120, 80 40 . Oopeeo oe caac p pace ooex pacopo AB (CC O7 oece 6% 3% ac. o epo a, cooeceo). Peya cex ca oe pecae a pc. 6.

Ba oaaee ao oe ec pacpeeee ac poeepoa o a aea paca: o-epx, o yaae a coceo exa eepoeoo apa e , o-opx, ee cyeceoe exooecoe aee. pepy, ec A-exa, paoaa pee paca, coyec xeco cee, e o peaeo a, o, oeo, o oa oaa peaeo cyeceo yec, ec a paca coep cee ype aoopaoo peaaa. B c c eecoopao oe pacpeeee ac eepoa o a paca aop, e a aoe pacpeeee.

1.1.0.0.0.0.0.5 0.7 0.9 1.1 1.3 1.Pacxo, / 1 2 3 Pc. 6. acoc cpeeo aepa ae aee pac cyce (1-3) ooeo oc (4) o pacxoa oc. 1 cyce co cpe aepo ac 40 ; 2 o e c paepo ac 80 ; 3 o e c aepo ac 120 ; 4 ooe pacop AB.

Moo oaa, o epooc oe o aya o ae aea ye oapyeo poo m ac, ye opeec ceye opyo:

r2 R G(r)drR(R)dR c rR{ }m R2 r2 t r R r(r)dr V(R)dR G(r)drR(R)dR c r Rr1 RPm(t)= exp } -{ Rm! t r r(r)dr V(R)dR Rrpy coa a aya a a aea paca aep a, paepoo epaa (R1-R2) coep poo m ac paepoo epaa (r1-r2).

p opeee epooc oo, o a a paca coep m ac oo paepa ceye ooac opyo m c Rsr t rsr c Rsr Pm (t) = exp- m! t rsr a opya ooe a cpeee co ac oo ae aea paca a oe epoo opa poecca yaccoa:

c Rsr M1 = t = t rsr Ha pc. 7 oaa pacee epooc xoe 1, 5 7 ac a paca acoc o cpex aepa ae ac.

Pace oaa, o yeee paepo ac oe po yee a opo epooc a oy acy ae, a p yee paepo ac oaec epooc oapy ae oee oo ac.

0.0.0.0.0.0 50 100 150 200 250 300 Paep a, 1 2 3 4 5 6 7 8 Pc. 7. Pacee epooc xoe oo (1, 2, 3), (4, 5, 6) ce (7, 8, 9) ac eepoa oy a paca p cpee aepe ac: 1, 2, 3 rsr = 25 mkm, 4, 5, 6 rsr = 45 mkm, 7, 8, 9 rsr = 95 mkm.

Bepooc, /p 4. eepa aa coep pep paecoo poe poayceco exoo.

epoae oepo (paee acce ooo aca) Bcece o opaaeoc eoo oepxocoo pae oco epoax cyccex ceecx ooo opaac eoo oeoo pae. o eo peayec ye ee pea ooo peaao ope cyce, coepae e. eo a opaoao pooco epoax opx ooo a Moeco oae ceecoo ooa aca (eopycc).

AB ooe a ae acoca SU acoo pooca co cey ocpy apaepa: oaa 4,8 3/ac (o oe);

aop 18 ooo coa; ocoa acoa ceoa yco ae 3,8 ; yooe aee 0,2 Ma; opeea ooc 1,5 B; acoa pae poopa 1450 -1; Zp=30; Zc=30; ap=ac=4 .

a pe ca apaoao 274 ap cyce ooa ceo (aa MO CCCP) 99,2% ooa poo 1- copo 0,8 op. Cpo cy epx oeo yec c 24 aco o 41.

oe ceeoc oeo yec c 1,4 o 0,35.

Opcoc yeac c 2,17 o 1,40. eoc a pooe cyce yeac c 180 o 40; eoc ooea yeea c 240 o 60. ce eo aapao apoa ea, oe acoc cc a-oaa.

Caa xopoc e (XOM) poea cocoa eocaoo ooea XOM pacope cyo-cpoo ap (CC), o poo eycoo paoe ya cy XOM (cyxo XOM oe poy) o o oopa peyae ocex poecco ey XOM (c oce) CC (opee eeco). Ha ocoa oyex cepeax peyao pyoocy O Xpo ceao peoee o peocpy ya peya 2-o cye. oceya cyaa peocpypoao ycao cy ooc ca ce eae apea peyeo exooecoo oope.

Teopeece ace oyex peyao oo oc a c o pe oe cee cepcoc oyex cyce oce opao AB, a -a oe aoc oepxoc epo a cyce XOM peyae A-opao (c. pc. 8).

0 10 20 30 40 Bpe oco, 1 2 3 4 5 Pc. 8. ea ceea cyce XOM: 1 e CC exaecoe epeeae (M); 2 e CC opaoa AB; 3 1% CC M; 4 1% AB; 5 2% M; 6 2% AB.

Pacopee caa ap Boe pacop caa ap oe opyo Na2O*mSiO2, e m peeec oy (pae 1,5-3,5) oe apooe ceo pecae coo pyooa poy eopaeco x. O ee aee a caocoe oap poy, a a oypoy pee oee e 20 opacx apooo xoca.

Moocee cceoa pacope ca- oaa, o o co ooca poecc, ocyece ca:

1) paa Na2O*n SiO2 + m H2O Na2O*n SiO2 * m H2O + Q 2) epexo pacop pax coee 3) po Na2O*n SiO2 * m H2O 2 NaOH + n SiO2 * (m-1) H2O 4) ea oooe pacopee poeco eo peeea 5) epoeca ccoa Na2SiO3 <==> 2 Na+ + SiO3-Oo, pacopee ca- aac epa oo cyce caa epex aoaax o aee 0,60,8 Ma p eepaype 160-1800C ee 4-5 aco.

B ax cceoax pa eooo ooaopoo apoa cepea c ocpoee aao coxacecx oee a (e yea eepx aoec):

Pages:     | 1 | 2 || 4 | 5 |



2011 www.dissers.ru -

, .
, , , , 1-2 .