WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 58 | 59 || 61 | 62 |   ...   | 76 |

Этот пример показывает не только возможность решения проблемы Плато различными поверхностями одного и того же топологического типа, но и поверхностями иного типа, причем на одном и том же контуре;

Рис. 248. Поверхность, накроме того, он снова иллюстрирует прерывтянутая на два зацепленный переход от одного решения к другому, в ных круга то время как граничные условия проблемы меняются непрерывно. Нетрудно построить более сложные модели в таком же роде и подвергнуть их экспериментальному исследованию.

Интересное явление — возникновение минимальных поверхностей, ограниченных двумя или большим числом взаимно зацепленных замкнутых контуров. В случае двух круговых контуров получается поверхность, изображенная на рис. 248. Если в этом примере плоскости кругов взаимно перпендикулярны и прямая их пересечения есть общий диаметр § 11 ОПЫТЫ С МЫЛЬНЫМИ ПЛЕНКАМИ двух кругов, то существуют две диаметрально противоположные формы минимальной поверхности с одинаковыми площадями. Представим себе теперь, что два круга постепенно изменяют свое взаимное положение;

тогда и форма минимальной поверхности будет меняться непрерывно, хотя при каждом положении кругов только для одной из поверхностей осуществляется абсолютный минимум, для другой же — только относительный. При некоторых положениях поверхность относительного минимума вдруг разрывается и заменяется поверхностью абсолютного минимума. Обе минимальные поверхности в этом примере — одного и того же топологического типа (как и поверхности на рис. 245 и 246).

4. Экспериментальные решения других математических проблем. Благодаря действию поверхностного натяжения жидкая пленка только при том условии может находиться в состоянии устойчивого равновесия, если площадь образуемой поверхности минимальна.

Это обстоятельство является неистощимым источником экспериментов серьезной математической ценности. Если некоторые части границы пленки могут свободно перемещаться по заданным поверхностям (например, плоскостям), то на этих частях границы.пленка будет стоять перпенРис. 249. Демонстрация кратчайшей системы путей междикулярно к заданной поверхности. ду 4 точками Мы можем использовать последнее отмеченное обстоятельство для наглядного решения проблемы Штейнера и ее обобщений (см. § 5). Пусть две параллельно расположенные стеклянные поверхности (или гладкие плитки) соединены тремя или б числом перпендикулярно стоольшим ящих стержней. Если погрузить всю такого рода систему в мыльный раствор, затем вынуть, то пленка образует между плоскими поверхностями ряд вертикальных полос, связывающих между собой стержни.

Проекция этих полос на горизонтальные плоскости есть не что иное, как решение проблемы Штейнера, рассмотренной на стр. 376–377.

Если две плоские поверхности не параллельны или стержни к ним не перпендикулярны, или сами поверхности не являются плоскими, то кривые, по которым пленки пересекаются с поверхностями, не будучи пря420 МАКСИМУМЫ И МИНИМУМЫ гл. VII мыми линиями, смогут иллюстрировать решение новых вариационных проблем.

Появление кривых, по которым смыкаются под углами в 120 различные минимальные поверхности, может рассматриваться как пространственное обобщение явлений, связанных с проблемой Штейнера. Это становится вполне ясным, если мы соединим, например, две точки A, B тремя различными пространствен.545 ными кривыми и затем погрузим Рис. 250. Кратчайшая система путей между 5 точками полученную (жестко укрепленную) систему в мыльный раствор.

Предположим для определенности, что одна из трех кривых есть прямолинейный отрезок, две другие — взаимно конгруэнтные круговые дуги. То, что получается, изображено на рис. 251. Если плоскости дуг образуют между собой угол меньше 120, мы получим решение минимальной проблемы в виде трех поверхностей, смыкающихся под Рис. 251. Три пересекающиеся под углом и 120 поверхности, натянутые на три проволоки, соединяющие две точки § 11 ОПЫТЫ С МЫЛЬНЫМИ ПЛЕНКАМИ углами в 120, но если станем поворачивать плоскости дуг, увеличивая заключенный между ними угол, то это решение в результате непрерывного изменения перейдет, наконец, в два плоских круговых сегмента.

Допустим теперь, что точки A и B соединены более сложными кривыми. В качестве примера возьмем три ломаные, состоящие каждая из трех ребер одного и того же куба и соединяющие диагонально противоположные вершины: тогда получатся три конгруэнтные минимальные поверхности, пересекающиеся по диагонали куба. (Мы получили бы ту же систему поверхностей из системы, изображенной на рис. 240, уничтожая пленки, прилежащие к трем надлежащим образом выбранным ребрам.) Если станем деформировать ломаные линии, соединяющие A и B, то линия взаимного смыкания поверхностей искривится, но углы неизменно останутся те же — в Рис. 252. Три ломаные линии, (рис. 252).

соединяющие две точки Все явления, связанные со смыканием трех минимальных поверхностей по одной кривой, в основном одной и той же природы: они представляют собой обобщение плоской проблемы о соединении системы n данных точек кратчайшей системой линий.

Наконец, добавим несколько слов о мыльных пузырях. Сферический мыльный пузырь показывает, что среди всех замкнутых поверхностей, охватывающих один и тот же объем (определенный запасом заключенного в нем воздуха), именно сфера имеет наименьшую поверхность. Если мы рассмотрим пузыри данного объема, стремящиеся сократить свою поверхность, но подчиненные некоторым дополнительным условиям, то.убедимся, что получаться будут уже не Рис. 253. Доказательство изопериметрического обязательно сферы, а, вообще говоря, поверхности постоянной средней свойства круга кривизны, частными примерами которых являются сферы и круговые цилиндры.

422 МАКСИМУМЫ И МИНИМУМЫ гл. VII Предположим, например, что пузырь заключен между двумя параллельными стеклами или плитками, предварительно смоченными мыльным раствором. Прикоснувшись к одной из плоскостей, пузырь внезапно принимает форму полусферы, если же происходит соприкосновение также и с другой плоскостью, он сразу превращается в круговой цилиндр, тем самым чрезвычайно наглядно демонстрируя изопериметрическое свойство круга. Все дело, конечно, в том, что мыльная пленка располагается перпендикулярно к ограничивающим поверхностям. Помещая мыльные пузыри между двумя плоскостями, которые соединены между собой стержнями, мы имеем возможность проиллюстрировать проблемы, разобранные на стр. 381.

P P R Q R Q Рис. 254–255. Изопериметрические фигуры с граничными условиями Можно еще рассмотреть, как изменяется решение изопериметрической проблемы при увеличении или уменьшении объема воздуха внутри пузыря. При этом следует воспользоваться тоненькой трубочкой или соломинкой. Однако, высасывая воздух, мы не получим тех фигур (см.

стр. 400), которые состоят из касающихся друг друга круговых дуг.

При уменьшении объема воздуха внутри пузыря углы в треугольнике из круговых дуг, однако, не станут (теоретически) меньшими, чем 120:

мы получим такие фигуры, какие изображены на рис. 254 и 255, причем при неограниченном уменьшении площади, заключенной внутри, в пределе получатся те же три сегмента, с которыми мы встретились и раньше (рис. 235). С математической точки зрения объяснение отмеченному различию заключается в том, что отрезок, связывающий пузырь с каким-нибудь стержнем, начиная с момента отделения пузыря от этого стержня, не должен считаться дважды. Соответствующие опыты иллюстрируются рис. 256 и 257.

Упражнение. Разберите математическую проблему, соответствующую § 11 ОПЫТЫ С МЫЛЬНЫМИ ПЛЕНКАМИ 270pt Рис. 256–257. Демонстрация изопериметрических свойств фигур с помощью мыльных пленок следующим условиям: найти треугольник, составленный из круговых дуг и имеющий данную площадь, по условию, чтобы сумма его периметра и трех отрезков, соединяющих вершины с тремя данными точками, была минимальной.

Помещая мыльный пузырь внутрь кубического проволочного каркаса, в случае если объем пузыря окажется больше, чем объем куба, мы получим поверхности постоянной средней кривизны с квадратными основаниями. Высасывая воздух из пузыря через соломинку, будем иметь целую цепь красивых структур, приводящих, в конце концов, к такой, какая изображена на рис. 258. Явления устойчивости и переход от одного состояния равновесия к другому порождают эксперименты, которые в математическом отношении нельзя не назвать весьма поучительными. Таким образом, возникает наглядная иллюстрация к теории стационарных значений; непрерывная цепь переходов от одного состояния равновесия к другому может быть выбрана таким образом, что в ее состав войдет состояние неустойчивого равновесия, все же являющееся «стационарным состоянием».

424 МАКСИМУМЫ И МИНИМУМЫ гл. VII Рассмотрим в качестве примера кубическую структуру на рис. 240.

Мы видим здесь нарушение симметрии: в центре куба имеется вертикальная площадка, смыкающаяся с двенадцатью поверхностями, идущими от ребер куба. Но тогда, как нетрудно понять, должно существовать еще по меньшей мере два положения равновесия: одно с вертикальной (иначе расположенной) и другое с горизонтальной площадкой в центре.

Чтобы на самом деле реализовать переход от одного положения равновесия к другому, нужно дуть через соломинку на ребра центральной площадки: при этом удается центральную площадку превратить в точку — центр куба, но полученное таким образом состояние равновесия не будет устойчивым и немедленно же перейдет в иное устойчивое состояние, причем центральная площадка снова возникает, хотя и повернувшись на 90.

Подобный же эксперимент можно произвести и с мыльной пленкой, демонстрирующей решение проблемы Штейнера для случая четырех точек, помещенных в вершинах Рис. 258. Пленки на кубическом каркасе квадрата (рис. 219, 220).

Если бы мы пожелали получить решение только что рассмотренных проблем как предельный случай цепи изопериметрических проблем, например, если бы мы хотели получить рис. 240 из рис. 258, нужно было бы понемногу высасывать воздух из центрального пузыря. Структура, изображенная на рис. 258, строго симметрична, и в пределе, когда объем центрального «кубика» обращается в нуль, получается также строго симметричная структура из 12 плоских треугольников с общей вершиной в центре. Этого в самом деле можно добиться. Но возникающее предельное положение равновесия не является устойчивым: внезапно оно сменяется одним из трех положений, изображенных на рис. 240. Все явления можно наблюдать вполне отчетливо, если раствор сделать несколько более вязким, чем было указано в нашем рецепте. Перед нами возникает яркая картина, показывающая, что даже в проблемах из области физики решение не всегда находится в непрерывной зависимости от начальных данных: в самом деле, в предельном случае, когда объем воздуха, заключенного в «кубическом» пузыре, обращается в нуль, решение, изображенное на рис. 240, § 11 ОПЫТЫ С МЫЛЬНЫМИ ПЛЕНКАМИ не является предельным для цепи решений, изображенных на рис. 258, возникающих для различных объемов, когда стремится к нулю.

Г Л А В А VIII Математический анализ Введение Было бы слишком большим упрощением представлять себе, что математический анализ «изобретен» двумя людьми: Ньютоном и Лейбницем. В действительности он сложился в итоге долгой эволюции, которая не была ни начата, ни закончена Ньютоном или Лейбницем, но в которой они оба сыграли значительную роль. Несколько математиковэнтузиастов из разных стран Европы в XVII в. поставили своей целью продолжение математической работы Галилея и Кеплера. Эти люди поддерживали друг с другом тесное общение с помощью переписки и личных встреч. Внимание их было привлечено двумя центральными проблемами. Во-первых, проблемой касательной: определить касательную к данной кривой — основная задача дифференциального исчисления. Во-вторых, проблемой квадратуры: определить площадь, связанную с заданной кривой, — основная задача интегрального исчисления.

Величайшей заслугой Ньютона и Лейбница является то, что они ясно осознали внутреннюю связь между этими двумя проблемами. И вот объединенный таким образом метод сделался в их руках мощным орудием науки. В значительной степени успех был обусловлен поистине чудесными символическими обозначениями, придуманными Лейбницем.

Заслуги этого ученого нисколько не умаляются тем, что им руководили смутные неуловимые идеи, такие идеи, которые иной раз способны заменить недостаток точного понимания в умах, предпочитающих мистицизм ясности. Ньютон, деятель точной науки в подлинном смысле слова, был, по-видимому, главным образом вдохновляем своим учителем и предшественником по Кембриджу Барроу (1630–1677), Лейбниц же пришел к математике скорее со стороны. Блестящий знаток законов, дипломат и философ, один из самых деятельных и многосторонних умов своего века, он изучил новейшую математику в невероятно короткое время у Гюйгенса, физика по специальности, во время своего пребывания в Париже в дипломатической миссии. Вскоре после этого он опубликовал результаты, которые содержат в себе ядро современного анализа. Ньютон, открытия которого были сделаны много раньше, не был расположен 428 МАТЕМАТИЧЕСКИЙ АНАЛИЗ гл. VIII их опубликовывать. Более того, хотя первоначально многие результаты, содержащиеся в его несравненном произведении «Principia», он нашел с помощью методов анализа, изложить их он предпочел в стиле классической геометрии; таким образом, в «Principia» почти совсем нет явных следов анализа. Лишь позднее были опубликованы его работы о методе «флюксий». Его почитатели вступили в жестокую схватку из-за приоритета с друзьями Лейбница. Они обвиняли последнего в плагиате, хотя трудно себе представить что-либо более естественное, чем одновременное и независимое открытие, когда атмосфера уже насыщена элементами какой-нибудь новой теории. Последовавшие пререкания по поводу «изобретения» анализа служат грустным примером того, как переоценивание вопросов о первенстве способно отравить атмосферу естественного научного единения.

Настоящая глава должна быть рассматриваема как элементарное введение, имеющее своей целью в гораздо большей степени познакомить читателя с основными концепциями, чем научить формальным операциям. Мы будем здесь широко применять «интуитивный язык», но при этом позаботимся, чтобы он не оказывался в противоречии с точными понятиями и научно обоснованными операциями.

§ 1. Интеграл 1. Площадь как предел. Для того чтобы вычислить площадь плоской фигуры, мы в качестве единицы площади выбираем квадрат со стороной, равной единице длины. Если единицей длины является сантиметр, соответствующей единицей площади будет квадратный сантиметр, т. е. квадрат, длина стороны которого равна сантиметру.

Pages:     | 1 |   ...   | 58 | 59 || 61 | 62 |   ...   | 76 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.