WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 32 | 33 || 35 | 36 |   ...   | 76 |

Построение конических сечений, понимаемых как «линейчатые кривые», показано на рис. 103–104. В частности, если в двух проективных точечных рядах бесконечно удаленные точки соответствуют взаимно одна другой (так будет непременно, если точечные ряды конгруэнтны или подобны1), то коническое сечение будет параболой; справедливо и обратное утверждение.

Упражнение. Докажите обратную теорему: на двух неподвижных касательных к параболе движущаяся касательная к параболе определяет два подобных точечных ряда.

4. Теоремы Паскаля и Брианшона для общего случая произвольных конических сечений. Одной из лучших иллюстраций Что такое «конгруэнтные» и «подобные» точечные ряды, достаточно понятно без объяснений.

§ 8 КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ Рис. 103. Парабола, определенная конгруэнтными точечными рядами Рис. 104. Парабола, определенная подобными точечными рядами 236 ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА гл. IV принципа двойственности применительно к коническим сечениям является взаимоотношение между общими теоремами Паскаля и Брианшона.

Первая из них была открыта в 1640 г., вторая — в 1806 г. И, однако, каждая из них есть непосредственное следствие другой, так как всякая теорема, формулировка которой упоминает только конические сечения, прямые и точки, непременно остается справедливой при изменении формулировки по принципу двойственности.

Теоремы, доказанные в § 5 под теми же наименованиями, представляют собой «случаи вырождения» следующих более общих теорем.

Теорема Паскаля. Противоположные стороны шестиугольника, вписанного в коническое сечение, пересекаются в трех коллинеарных точках.

Рис. 105. Общая конфигурация Паскаля. Показаны два случая: один для шестиугольника 1, 2, 3, 4, 5, 6, другой для шестиугольника 1, 3, 5, 2, 6, Теорема Брианшона. Три диагонали, соединяющее противоположные вершины шестиугольника, описанного около конического сечения, конкуррентны.

Обе теоремы имеют очевидное проективное содержание. Их двойственность бросается в глаза, если сформулировать их следующим образом:

Теорема Паскаля. Дано шесть точек 1, 2, 3, 4, 5, 6 на коническом сечении. Соединим последовательные точки прямыми (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1). Отметим точки пересечения прямых (1, 2) и (4, 5), (2, 3) и (5, 6), (3, 4) и (6, 1). Эти три точки лежат на одной прямой.

§ 8 КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ Теорема Брианшона. Дано шесть касательных 1, 2, 3, 4, 5, 6 к коническому сечению. Последовательные касательные пересекаются в точках (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1). Проведем прямые, соединяющие точки (1, 2) и (4, 5), (2, 3) и (5, 6), (3, 4) и (6, 1). Эти три прямые проходят через одну точку.

Y C F X A B D E Рис. 106. Общая конфигурация Брианшо- Рис. 107. Доказательство теорена. Показаны только два случая мы Паскаля Доказательства проводятся с помощью специализации такого же рода, как и в рассмотренных раньше случаях вырождения. Докажем теорему Паскаля. Пусть A, B, C, D, E, F — вершины шестиугольника, вписанного в коническое сечение K. Посредством проектирования можно сделать параллельными прямые AB и ED, F A и CD (и тогда получится конфигурация, изображенная на рис. 107; ради удобства шестиугольник на чертеже взят самопересекающимся, хотя в этом нет никакой необходимости.) Нам нужно теперь доказать только одно: что прямая CB параллельна прямой F E; другими словами, что противоположные стороны пересекаются на бесконечно удаленной прямой. Для доказательства рассмотрим четверку точек F, A, B, D, которая, как мы знаем, при проектировании из любой точки K сохраняет одно и то же двойное отношение, скажем, k. Станем проектировать из точки C на прямую AF ;

получим четверку точек F, A, Y,, причем Y F k = (F, A, Y, ) = Y A (см. стр. 205).

Станем теперь проектировать из точки E на прямую BA; получим 238 ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА гл. IV Рис. 108. Построение прямых, пересекающих три данные прямые общего положения четверку точек X, A, B,, причем BX k = (X, A, B, ) =.

BA Итак, BX Y F =, BA Y A что как раз и означает, что Y B F X. Доказательство теоремы Паскаля закончено.

Теорема Брианшона, как было указано, следует из теоремы Паскаля по принципу двойственности. Но ее можно доказать и непосредственно — путем рассуждения, двойственного относительно только что приведенного. Провести это рассуждение во всех деталях будет прекрасным упражнением для читателя.

5. Гиперболоид. В трехмерном пространстве мы встречаемся с так называемыми квадриками (поверхностями второго порядка), которые в данном случае играют ту же роль, что «конические сечения» (кривые второго порядка) на плоскости.

Простейшими из них являются сфера и эллипсоид. Квадрики более разнообразны, чем конические сечения, и изучение их связано с б ольшими трудностями. Мы рассмотрим бегло и без доказательств одну из самых интересных поверхностей этого типа: так называемый связный (или однополостный) гиперболоид.

Эта поверхность может быть получена следующим образом. Возьмем в пространстве три прямые l1, l2, l3, находящиеся в общем положении.

Последнее означает, что никакие две из них не параллельны и все три § 8 КОНИЧЕСКИЕ СЕЧЕНИЯ И КВАДРИКИ не являются параллельными одной и той же плоскости. Может показаться удивительным, что существует бесконечное множество прямых в пространстве, из которых каждая пересекается со всеми тремя данными прямыми. Убедимся в этом.

Пусть — произвольная плоскость, содержащая прямую l1; эта плоскость пересекает прямые l2 и l3 в двух точках, и прямая m, проведенная через эти две точки, очевидно, пересекается со всеми прямыми l1, l2 и l3. Когда плоскость вращается около прямой l1, прямая m будет изменять свое положение, однако все время продолжая пересекаться с тремя данными прямыми. При движении m возникает поверхность, неограниченно уходящая в бесконечность, которая и называется однополостным гиперболоидом. Она содержит бесконечное множество прямых типа m. Любые три такие прямые, скажем m1, m2 и m3, также будут находиться в общем положении, и те прямые в пространстве, которые Рис. 109. Гиперболоид будут пересекаться с тремя прямыми m1, m2 и m3 одновременно, также будут лежать на рассматриваемой поверхности. Отсюда следует основное свойство гиперболоида: он составляется из двух различных семейств прямых линий; каждые три линии одного и того же семейства находятся в общем положении и каждая прямая одного семейства пересекается со всеми прямыми другого.

Важное проективное свойство гиперболоида заключается в том, что двойное отношение тех четырех точек, в которых данная четверка прямых одного семейства пересекается с некоторой прямой второго семейства, не зависит от выбора этой последней. Это утверждение вытекает из метода построения гиперболоида с помощью вращающейся плоскости, и читатель может убедиться в его справедливости и качестве упражнения.

Отметим еще одно замечательное свойство гиперболоида: хотя он содержит два семейства прямых линий, но существование этих прямых не препятствует изгибанию поверхности — не делает ее жесткой.

Если устроить модель гиперболоида из стержней, способных свободно вращаться около точек взаимных пересечений, то поверхность в целом 240 ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА гл. IV может быть непрерывно деформируема, пробегая бесконечное множество различных состояний.

§ 9. Аксиоматика и нееклидова геометрия 1. Аксиоматический метод. Аксиоматический метод в математике берет свое начало по меньшей мере от Евклида. Было бы совершенно ошибочно полагать, что античная математика развивалась или излагалась исключительно в строго постулативной форме, свойственной «Началам». Но впечатление, произведенное этим сочинением на последующие поколения, было столь велико, что в нем стали искать образцов для всякого строгого доказательства в математике. Иной раз даже философы (например, Спиноза в его «Ethica, more geometrico demonstrata») пытались излагать свои рассуждения в форме теорем, выводимых из определений и аксиом. В современной математике, после периода отхода от евклидовой традиции, продолжавшегося на протяжении XVII и XVIII вв., снова обнаружилось все усиливающееся проникновение аксиоматического метода в различные области. Одним из самых недавних продуктов подобного рода устремления мысли явилось возникновение новой дисциплины — математической логики.

В общих чертах аксиоматическая точка зрения может быть охарактеризована следующим образом. Доказать теорему в некоторой дедуктивной системе — значит установить, что эта теорема есть необходимое логическое следствие из тех или иных ранее доказанных предложений;

последние в свою очередь должны быть доказаны и т. д. Процесс математического обоснования сводился бы, таким образом, к невыполнимой задаче «бесконечного спуска», если только в каком-нибудь месте нельзя было бы остановиться. Но в таком случае должно существовать некоторое число утверждений — постулатов, или аксиом, которые принимаются в качестве истинных и доказательство которых не требуется. Из них можно пытаться вывести все другие теоремы путем чисто логической аргументации. Если все факты некоторой научной области приведены в подобного рода логический порядок, а именно такой, что любой из них «выводится» из нескольких отобранных предложений (предпочтительно, чтобы таковые были немногочисленны, просты и легко усваивались), то тогда есть основание сказать, что область представима в «аксиоматической форме» или «допускает аксиоматизацию». Выбор предложений-аксиом в широкой степени произволен. Однако мало пользы, если наши постулаты недостаточно просты или если их слишком много. Далее, система постулатов должна быть совместимой (непротиворечивой) в том смысле, что никакие две теоремы, которые из них могут быть выведены, не должны содержать взаимных противоречий, и полной в том смысле, что всякая теорема, имеющая место в рассмат§ 9 АКСИОМАТИКА И НЕЕКЛИДОВА ГЕОМЕТРИЯ риваемой области, из них может быть выведена. Желательно также, чтобы система постулатов была независимой, т. е. чтобы ни один из них не был логическим следствием остальных. Вопрос о непротиворечивости и полноте системы аксиом был предметом больших дискуссий.

Различные философские взгляды на источники человеческого знания обусловили различные, подчас несовместимые точки зрения на основания математики. Если математические понятия рассматриваются как субстанциальные объекты в сфере «чистой интуиции», независимые от определений и отдельных актов мыслительной деятельности человека, тогда, конечно, в математических результатах не может быть никаких противоречий, поскольку они представляют собой объективно истинные предложения, описывающие реальный мир. Если исходить из такой «кантианской» точки зрения, то никакой проблемы непротиворечивости вообще нет. Но, к сожалению, действительное содержание математики не удается уложить в столь простые философские рамки. Представители современного математического интуиционизма не полагаются на чистую интуицию в ее полном кантовском понимании. Они признают счетную бесконечность в качестве законного детища интуиции, но допускают использование лишь конструктивных свойств. Такие же фундаментальные понятия, как числовой континуум, следует, с их точки зрения, исключить из употребления, пожертвовав при этом важными разделами существующей математики (а то, что после этого остается, оказывается чрезвычайно сложным, причем без особой надежды на упрощение).

Совершенно другую позицию заняли «формалисты». Они не приписывают математическим понятиям никакой интуитивной реальности и не утверждают, что аксиомы выражают какие-то объективные истины, относящиеся к объектам чистой интуиции; они (формалисты) заботятся лишь о формальной логической правильности процесса рассуждений, базирующихся на постулатах. Позиция эта обладает безусловными преимуществами по сравнению с интуиционистской, так как она предоставляет математике полную свободу действий, нужную как для теории, так и для приложений. Но она вместе с тем вынуждает формалистов доказывать, что принятые ими аксиомы, выступающие теперь в качестве продукта свободного творчества человеческого интеллекта, не могут привести к противоречию. На протяжении последних двадцати лет1 предпринимались многочисленные и напряженные попытки поиска такого рода доказательств непротиворечивости, особенно по отношению к аксиомам арифметики и алгебры и к понятию числового континуума. Результаты, Написано в 1941 г. О дальнейших работах в этой области, а также по поводу всей обширной проблематики оснований математики и характеристики различных направлений, см. [11], [15], [38]. — Прим. ред.

242 ПРОЕКТИВНАЯ ГЕОМЕТРИЯ. АКСИОМАТИКА гл. IV полученные в этом направлении, имеют исключительную важность, но задача в целом еще далеко не выполнена2. Более того, полученные в последние годы результаты свидетельствуют о том, что такого рода попытки и не могут привести к полному успеху — выяснилось, что для некоторых строго определенных и замкнутых систем понятий вообще нельзя доказать, что они непротиворечивы и в то же время полны. Особенно замечательно то обстоятельство, что все такого рода рассуждения, касающиеся проблем обоснования, проводятся полностью конструктивными и интуитивно убедительными методами.

Спор между интуиционистами и формалистами, особенно обострившийся в связи с парадоксами теории множеств (см. стр. 108–109), породил массу страстных выступлений убежденных сторонников обеих школ.

Математический мир потрясали возгласы о «кризисе основ». Но эти сигналы тревоги не воспринимались — да и не следовало их воспринимать — слишком уж всерьез. При всем уважении к достижениям, завоеванным в борьбе за полную ясность основ, вывод, что эти расхождения во взглядах или же парадоксы, вызванные спокойным и привычным использованием понятий неограниченной общности, таят в себе серьезную угрозу для самого существования математики, представляется совершенно необоснованным.

Совершенно независимо от каких бы то ни было философских рассмотрений и интереса к проблемам оснований аксиоматический подход к предмету математики — самый естественный способ разобраться во всех хитросплетениях взаимосвязей между различными фактами и выяснить закономерности логического строения объединяющих их теорий.

Не раз случалось, что такое сосредоточение внимания на формальной структуре, а не на интуитивном смысле понятий, облегчало отыскание обобщений и применений, которые легко было бы упустить при более интуитивном подходе к делу. Но выдающиеся открытия и подлинное понимание лишь в исключительных случаях оказывались результатом применения чисто аксиоматических методов. Подлинный источник развития математики — это творческая мысль, поддерживаемая интуицией.

Pages:     | 1 |   ...   | 32 | 33 || 35 | 36 |   ...   | 76 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.