WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 18 |

Стратегии B Стратегии min строк A 1 2 3 1 8 2 9 5 2 6 5 7 18 3 7 3 –4 10 –max столб- 8 5 9 цов Оптимальными стратегиями будут для A – 2, для B – 2. Цена игры равна 5. Отметим, что в случае наличия седловой точки ни один из игроков не может улучшить стратегию и стратегии называются чистыми. Отметим, что игра с чистыми стратегиями может существовать только при наличии полной информации о действиях противника.

Если же решение игры получено в смешанных стратегиях, то это эквивалентно созданию множества вариантов проектируемого компонента и использованию их с оптимальными частотам, соответствующими оптимальной смешанной стратегии. В случаях, когда не имеется полной информации о действиях противника, вводятся вероятности применения той или иной стратегии в виде векторов n P = < p1, p2,..., pn > – для игрока A, где pi = 1 ;

i =m Q = < q1, q2,..., qn > – для игрока B, где = 1.

qi i=При этом игрок A выбирает стратегию в соответствии с принципом максимина по выражению:

n n n maxmin pi,... pi, ai1 ai2 ain Pi i=1 i=1 i = а игра B по принципу минимакса:

m m n minmax j1qi, q... q.

a a j2 j a jn j Pi j =1 j =1 j = Рассмотрим пример: пусть рассматривается принятие решения в игре 2 2, где игрок A знает вероятность стратегии 1, т.е. p1, тогда очевидно вероятность стратегии 2 будет 1 – p, соответственно стратегии игрока B будут q1 и 1 – q1. Платежная матрица будет иметь вид:

B q1 1 – qA p1 a11 a 1 – p1 a21 aНа основании матрицы и приведенных выше выражений составляется таблица:

Чистые стратегии Ожидаемые выигрыши игрока B игрока A 1 (a11 – a21)p1 + a2 (a12 – a22)p1 + aИз таблицы видно, что ожидаемый выигрыш игрока A линейно зависит от вероятности p1 (в данном случае задача может быть решена графоаналитически). Тогда смешанная стратегия игрока А будет иметь вид:

< p*1, p*2 >, т.е. игроку A выгодно применять стратегию 1 с частотой (вероятностью) – p1, а стратегию 2 с частотой p2.

Очевидно, что разработка нескольких вариантов изделия сопряжена с большими затратами, не всегда реализуема и затрудняет использование системы. Поэтому при получении решения в смешанных стратегиях рекомендуются следующие случаи принятия окончательного решения:

• для дальнейшего проектирования выбирается тот вариант, который гарантирует максимальное качество (выбор по максиминной стратегии аналогично критерию Вальда);

• выбирается тот вариант, который в смешанной стратегии должен использоваться с максимальной вероятностью;

• реализуется несколько вариантов изделия с частотами, соответствующими смешанной стратегии (создание адаптивно-модульных конструкций).

Важное значение в задачах исследования качества адаптивных систем имеет не только решение игры, но и анализ платежной матрицы. Это особенно важно в тех случаях, когда решение в смешанных стратегиях не реализуется. Этот анализ может проводиться на основе: оценки возможных потерь эффективности в случае реализации чистой стратегии, определения дополнительных затрат на их компенсацию с помощью «гибких» конструкторских решений, оценки достоверности рассмотренных стратегий противодействия, определения возможности реализации компромиссных вариантов и т.д.

Для анализа конфликтной ситуации требуется на основе математической модели операции построить платежную матрицу [Wmn] = [Wij], где Wij характеризует качество изделия при выборе i-го варианта проектируемого изделия и при j-м варианте противодействия противника.

Решение может быть получено в чистых стратегиях, когда есть седловая точка. Условие седловой точки имеет вид max minWij = min maxWij, (2.20) i j j i где левая часть выражения – нижняя цена игры; правая – верхняя цена игры.

Если условие (2.20) не выполняется, то седловая точка отсутствует и требуется реализация смешанной стратегии.

Решение в смешанных стратегиях состоит в реализации чистых стратегий с различными вероятностями, задаваемыми распределением:

• для проектируемого изделия в виде вектора-столбца m G = {gi}, где i = 1, 2,..., m; = 1;

gi i=• для противодействия в виде вектора-строки n F = {fj}, где j = 1, 2,..., n; f = 1, j j =где gi – вероятность выбора стратегии ui; fj – вероятность выбора стратегии vj.

Платежную функцию запишем в следующем виде:

m n т W (G, F) = GтWijF = gi f, (2.21) Wij j i=1 j =где индексом «т» обозначена процедура транспонирования.

Платежная функция W(G, F) всегда имеет седловую точку, т.е. всегда существует решение матричной игры. Это утверждение соответствует основной теореме теории матричных игр: каждая матричная игра с нулевой суммой имеет, по крайней мере, одно решение в чистых или смешанных стратегиях.

Последовательность решения игры следующая.

1 Анализируется платежная матрица на предмет исключения заведомо невыгодных и дублирующих стратегий.

2 Проверяется наличие седловой точки по условию.

3 Если решение в чистых стратегиях отсутствует, то ищется решение в смешанных стратегиях с помощью методов линейного программирования или методом Монте-Карло.

2 6 5 17 18 7 3 7 3 14 10 8 4 4 6 16 9 19 5 12 4 15 8 10 min столб- 6 2 9 5 ца Возможности использовании существующих методов принятия решения в условиях неопределенности к задачам долгосрочного планирования ассортимента Результатом оптимизации ассортимента, очевидно, предполагает формирование некоторого портфеля товаров (альтернатив). В классических же моделях принятия решений в условиях неопределенности выбирается, как правило, лишь один вариант из некоторого множества, имеющихся в наличии [2, 3, 4, 6, 25, 31, 46, 54, 59, 131]. Поэтому методики, используемые, например, для оценки и учета рисков в инвестиционных проектах, довольно специфичны и не могут применяться в задачах формирования ассортимента.

Как показало наше исследование, попытка применения модели Марковица и ее модификация (в целях определения разумной степени диверсификации для снижения риска) встречают значительные затруднения в задачах планирования ассортимента и вряд ли могут использоваться в этих целях. Так, например, ценные бумаги более ликвидны, чем оборудование, здания и т.д. Поэтому при отказе от какойлибо альтернативы, риск безвозвратных затрат на фондовом рынке минимален, т.е. нет необходимости динамического учета ресурсов, повышения гибкости бизнес-процессов. Таким образом, предложенная Марковицем концепция риска в виде дисперсии доходности недостаточно полно отражает сложный характер производственно-хозяйственной деятельности.

Кроме того, в традиционных подходах под упущенной выгодой понимается альтернативные вложения капитала в фондовый рынок, банк и т.д. Однако, на наш взгляд, при планировании товарного ассортимента альтернативными являются издержки, затраченные на реализацию бизнес-процессов подготовки производства и реализации продукции другого товара (альтернативы), который вполне возможно окажется более прибыльным, т.е. ставка альтернативного вложения капитала является одной из неизвестных переменных моделей, зависящая от того, какие товары будут включены в план, а какие – нет, что в традиционных моделях оптимизации определить практически невозможно. Данный фактор привел к отказу использования метода ранжирования при оптимизации ассортимента в наших исследованиях.

Обычно в моделях величина риска по какой-либо альтернативе не зависит от того, будут ли реализованы остальные альтернативы или нет. Однако убытки в виде безвозвратных затрат при полном или частичном отказе от данного товара, как мы покажем далее, могут быть снижены за счет общих с другими товарами бизнес-процессов.

Поэтому, на наш взгляд, при рассмотрении вопроса о включении определенного товара в план, риски, связанные с бизнес-процессами по разработке, производству и реализации зависят от множества других бизнес-процессов, которые окажутся в конечном итоге в плане.

Таким образом, возникает противоречие: необходимо рассчитать величину риска товара, чтобы определить включать его или нет в будущий ассортимент, что сделать невозможно, поскольку не сформирован основной конечный план, на основе которого и имеется возможность произвести расчет риска.

Исследования существующей литературы по данному вопросу показало отсутствие даже подобной постановки проблемы, решение которой является довольно существенным.

Решение данного противоречия содержит разработанная модель оптимизации.

Замена ( стратегии эксплуатации ) 3 ОБЗОР ОСНОВНЫХ МОДЕЛЕЙ ОПТИМИЗАЦИИ АССОРТИМЕНТА Предельные возможности прогнозирования привели к падению эффективности долгосрочных и среднесрочных планов, регламентирующих определенные действия организации в будущем, поэтому получило развитие стратегическое управление как инструмент преодоления неопределенности. Считается, что результатом реализации стратегических альтернатив является создание ресурсного потенциала, который, очевидно, выступает в качестве ограничения при краткосрочной оптимизации. Однако пока не создано методики формирования оптимального потенциала компании, позволяющего быстро, своевременно и адекватно реагировать на труднопрогнозируемые изменения внешней и внутренней среды.

Большинство подходов к выработке стратегий носят рекомендательный характер и не позволяют оценить эффект от различных комбинаций выбранных стратегических альтернатив. Следовательно, стратегическое планирование наталкивается на проблему оптимального планирования распределения ресурсов, связанных с производством, разработкой и реализацией товаров в будущем. Поэтому актуальным, представляется сближение концепций стратегического и долгосрочного планирования в целях обеспечения динамической аккумуляции ресурсов вокруг фирмы таким образом, чтобы создаваемый компанией производственно-экономический потенциал мог обеспечивать ей устойчивое развитие в долгосрочной перспективе.

Как показало исследование, вопросы учета, оценки и преодоления неопределенности при оптимизации товарного ассортимента пока еще недостаточно проработаны. Востребован механизм, который наиболее адекватно с точки зрения поставленных фирмой целей учитывает риск при принятии и реализации решений относительно товарного ассортимента.

Приведем краткий обзор основных моделей и методик планирования ассортимента.

1 Модель планирования ассортимента с помощью модифицированной матрицы БКГ (Модель 1) [105]. Предлагается способ построения стратегической матрицы (наподобие классической матрицы Бостон Консалтинг Групп), основанный исключительно на внутренней (т.е., как считает автор, наиболее достоверной и практически бесплатной) информации предприятия. Единицей анализа выступает «группа продукта», характерными параметрами – K – удельный вес группы в объеме сбыта и Т – удельный вес группы в темпе изменения объемов сбыта (по линейному тренду). Модифицированная матрица может использоваться в процессе стратегического анализа и планирования продуктовой программы (товарного ассортимента), а также в процессе контроллинга.

Ограничениями модели 1 являются:

1) предприятие не является «монокультурным», т.е. в некоторой степени диверсифицированным;

2) предприятие не производит заведомо убыточных продуктов, либо эта убыточность может быть нивелирована путем перераспределения (в пределах возможного) общих накладных расходов;

3) в течение периода анализа не происходило (и не предвидится) резких всплесков инфляции.

Содержание модели 1 заключается в следующем. В качестве базовой единицы используется понятие «группа продукта», под которым подразумевается часть линии продукта (товара или услуги), ориентированного, с одной стороны, на удовлетворение схожей по природе потребности, а с другой стороны – рассчитанного на потребление достаточно определенным сегментом рынка. При таком определении, «группа продукта» отличается от традиционного СХП только отсутствием упоминания о степени независимости групп как в технологическом, так и в организационном плане. Тем не менее, автор данной методики полагает, что понятие «группа продукта» значительно легче воспринимается топменеджерами, привыкшими мыслить категориями скорее предметно-конкретными, нежели стратегическими, т.е. более отвлеченными. Также очевидно, что при различных видах реструктуризации предприятий именно наиболее удачные группы продукта должны быть положены в основу организации полноценных бизнес-единиц (СХП).

В качестве характеристики каждой группы продукта (горизонтальной оси модифицированной матрицы) предлагается параметр K – «удельный вес» группы продукта в общем объеме сбыта предприятия.

Для каждой группы продукта (заменяющей СХП) строится пространство координат, где одна из них K – характеризует долю каждой группы в объеме сбыта («доля рынка»), а другая Т – долю в темпе изменения объема сбыта («рост рынка»), причем значения координат для каждой группы поддаются точному вычислению на основании данных о реализации предприятия за некоторый период.

Вычислив эти значения для каждой группы продукта и представив их графически (т.е. максимально удобно для восприятия) получается параметрический график (стратегическая матрица), характеризующая каждую группу продуктов ассортимента (производственной программы) и построенный на основании внутренней информации предприятия.

Таким образом, предложенная методика позволяет получить достаточно простой и эффективный инструмент стратегического анализа, планирования и контроля, использующий в качестве базы внутреннюю информацию предприятия и объединяющий в себе наиболее характерные процедуры концентрационного, динамического, матричного и кластерного анализа объемов и темпов сбыта товарных групп предприятия.

Основным недостатком модели, на наш взгляд, является строгая зависимость предприятия от внутренней информации. Проводится экстраполяция прошлого опыта организации на будущее, тогда как фирме постоянно приходится формировать спрос, адаптировать свой маркетинг к внешней среде, откуда исходят основные риски.

2 Математические модели (Модель 2). Модели текущего и перспективного планирования подразделяются на три большие группы моделей [5, 134, 135]:

• имитационные;

• балансовые;

• оптимизационные (однокритериальные и многокритериальные).

Проблемам перспективного планирования на предприятиях в настоящее время уделяется, как правило, сравнительно небольшое внимание. Это связано в основном с тем, что проблема непредсказуемости остается одной из самых актуальных в экономике. Не удалось ее решить и с помощью математического аппарата, что подтверждается ослаблением интереса к стратегическому планированию в зарубежных организациях. Поэтому в настоящее время основное внимание уделяется оперативным календарным планам с использованием соответствующих экономико-математических моделей.

Рассмотрим основные модели оптимизации более подробно.

Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 18 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.