WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 || 3 | 4 |

Неправильно поставлена проблема. Сравнивается полезность всей воды и всех алмазов, которыми располагает человек, а под ценой понимается количество денег, которое он готов заплатить за единицу воды (один литр) и единицу алмазов (один карат). Безусловно, что полезность всей воды выше, чем полезность всех алмазов. И если человека поставить перед выбором: либо вода, либо алмазы, он выберет воду и готов будет заплатить за нее самую высокую цену, т.к. это цена его жизни. Но когда мы говорим о единице воды и алмаза, перед человеком совсем другой выбор: сколько он готов заплатить за дополнительный литр воды и за дополнительный карат алмазов. Так как в нормальных условиях человеку доступно значительное количество воды, а алмазов у него нет, он выберет алмаз и заплатит за каждый карат его большую цену, чем за литр воды. Изменим условия выбора. Пусть человек находится в пустыне, у него нет ни воды, ни алмазов и перед ним выбор: либо литр воды, либо алмаз. Ясно, что нормальный человек предпочтет воду.

Вывод: для потребителя цена единицы блага определяется предельной полезностью этого блага. Вспомним, что под предельной полезностью понимается полезность дополнительной единицы этого блага.

Пусть человек покупает Q единиц какого О т ш е л ь н и к либо блага. Если он будет последоваК. М е н г е р а тельно покупать по единице этого блага, добавляя их к уже имеющемуся у него количеству, полезность каждой следующей единицы будет убывать. Как уже говорилось, полезность первой добавленной единицы будет наибольшей, второй меньше, третьей - еще меньше и т.д.

Вопрос: если человек купил Q единиц блага, то полезность какой из этих единиц определяет цену, которую этот человек готов заплатить за каждую из этих единиц На этот вопрос отвечает К. Менгер – глава австрийской школы предельной полезности. Допустим, что где-то в пустынном месте живет отшельник и время от времени отправляется к людям, чтобы купить себе пропитание. Основой его питания является зерно, и он может купить от одного до пяти мешков зерна в зависимости от цены на рынке. Полезность первого мешка – цена жизни отшельника:

приобретя его он сможет дожить до следующей поездки. Полезность второго мешка – сытая жизнь, вдоволь хлеба. Третий мешок позволит ему откормить поросенка и получить мясо. Из четвертого он сможет сварить пиво. А пятый использует, чтобы кормить птичек, т.е. удовлетворять свои нематериальные потребности. Вопрос: от полезности какого мешка зависит цена, которую отшельник готов заплатить за каждый из пяти мешков зерна Разумеется, цена зерна на рынке не зависит от отшельника.

Если она велика, то за единственный мешок он будет готов отдать все, что у него есть, ибо цена единственного мешка для отшельника – его жизнь. Но если рыночная цена будет меньше, то и оценка отшельником полезности каждого последующего мешка будет уменьшаться.

Вопрос: если отшельник купил какое либо количество мешков, то как он оценивает полезность любого из них Ответ очевиден. Так как на рынке все мешки зерна имеют одну цену, отшельник заплатил одну и ту же цену за любой из купленных мешков, и полезность любого из них для него одинакова. Так, если он купил пять мешков, цена любого из них определяется полезностью пятого мешка (удовольствием кормить птичек), то есть предельной полезностью пяти мешков. Если же куплено, например, три мешка, цена любого из них определяется полезностью третьего мешка, которая равна предельной полезности трех мешков.

Вывод: цена, которую потребитель готов заплатить за единицу любого блага, определяется предельной полезностью этого блага.

Так как предельная полезность любого блага зависит от его количества, имеющегося у потребителя, то, чем больше этого блага у потребителя, тем меньшую цену он готов заплатить за дополнительную единицу этого блага, и наоборот.

Деньги сами по себе не удовлетворяют ниП о л е з н о с т ь каких потребностей человека. Но на них д е н е г можно приобрести блага, которые обладают полезностью. Поэтому полезность некоторой суммы денег равна полезности благ, которые можно на эти деньги приобрести. Полезность денег зависит от их количества, отсюда можно заключить, что существует функция полезности денег. И эта функция выглядит точно так же, как функция полезности любого другого блага: она проходит через начало координат, непрерывно возрастает, выпукла вверх. Последнее свойство означает, что предельная полезность единицы денег убывает с ростом их количества. Это легко понять:

тысяча рублей имеет высокую полезность для того, у кого денег нет, и почти нулевую - для владеющего миллионами.

С а н к т – П е т е р б у р г- На свойство убывающей предельной полезности денег с к и й п а р а д о к с впервые обратил внимание ( Д. Б е р н у л л и ) швейцарский математик Д.

Бернулли, работавший в России. При обсуждении проблем теории вероятностей, связанных с азартными играми, он показал неравноценность выигрыша и проигрыша при их равной вероятности (рис.

4).

Рис. 4.

Пусть Q – количество денег, U – их полезность, а U=f(Q) функция полезности денег от их количества. Пусть два человека играют в «орла» и «решку». Тогда Q1 – количество денег у одного из игроков перед началом игры, Q – величина ставки на одну игру.

MUB – полезность выигрыша, MUП – полезность проигрыша. Так как предельная полезность денег с ростом их количества убывает, то MUП >MUB. Вероятности выигрыша и проигрыша равны. Парадокс заключается в следующем: при равной вероятности выигрыша и проигрыша полезность выигрыша меньше полезности проигрыша.

Условия игры равны, а результат не равноценен: проигравший теряет больше, чем получил бы при выигрыше.

На свойстве убывающей предельной поК о м м у н и с т и лезности основан коммунистический пач е с к и й радокс. Общество желает иметь такую п а р а д о к с систему производства и распределения продуктов, которая обеспечит наибольшую для всего общества суммарную полезность произведенных благ. Пусть за год произведен набор благ и он каким-то образом распределен среди людей. Обычно такое распределение неравномерно. Если провести уравнительный передел благ между людьми, то суммарная полезность благ возрастет. Отсюда вывод: уравнительный передел повышает благосостояние общества. Докажем это (рис. 5).

Рис. 5.

Выделим из всего общества двух человек и единственное благо. Для простоты будем считать, что функция полезности выбранного блага для этих людей одинакова. Пусть Q1 – количество блага, доставшееся первому человеку, а Q2 – второму. Теперь проведем уравнительный передел так, что каждому из них достанется QСР=(Q1+Q2)/2. Тогда первый получит дополнительно Q=QСР-Q1, а второй потеряет то же количество Q. Обозначим MU1 – прирост полезности для первого человека в результате передела, а MU2 – сокращение полезности для второго. Из свойства убывающей предельной полезности следует, что MU1>MU2. В результате передела суммарная полезность благ для общества возрастет на величину MU1 и сократится на MU2. Прирост составит MU1-MU2. Но так как MU1>MU2, то MU1-MU2>0, то есть в результате уравнительного передела суммарная полезность возрастает, что и требовалось доказать.

Вывод, что уравнительный передел произведенного набора благ повышает его общую полезность, бесспорен. При уравнительном переделе часть благ забирают у тех, у кого их много, и добавляют тем, у кого их меньше. Предельная полезность благ для богатых низка, а для бедных высока, следовательно, уравнительный передел повышает суммарную полезность благ.

В чем же тут парадокс В том, что (как россияне убедились на собственном опыте) уравниловка не приводит к повышению благосостояния людей, уравниловка – зло. От способа распределения зависит отношение людей к производству, а значит, и объем производства благ зависит от способа их распределения. Уравниловка уничтожает стимулы всех членов общества к труду и накоплению.

Верно, что уравнительный передел уже произведенного набора благ повышает его общую полезность. Но так же верно, что в следующем периоде благ будет произведено меньше и их общая полезность станет снижаться.

3. О П Т И М А Л Ь Н Ы Й НАБ О Р Б Л А Г Потребителю требуется не одно благо, Н е ф о р м а л ь н о е а множество, их перечень будем назыи з л о ж е н и е вать набором благ. Отправляясь на рынок, потребитель располагает некоторой суммой денег, которую он желает истратить на покупки. Эту сумму назовем бюджетом потребителя. Цены на рынке от потребителя не зависят, и от его покупок не изменяются. Естественно, потребитель стремится как можно полнее удовлетворить свои потребности, а значит, желает купить набор благ с наибольшей суммарной полезностью. Такой набор благ назовем оптимальным. Для простоты рассуждений будем считать, что потребитель делает покупки последовательно, шаг за шагом. На каждом шаге он затрачивает единицу денег, то есть он каждый раз покупает порцию блага, которую можно приобрести за единицу денег.

Рассмотрим стратегию покупателя, которая приводит его к оптимальному решению. Узнав цены, покупатель сортирует все блага по степени полезности для себя с учетом, разумеется, запасов, которые у него есть. Сортировать он их будет по убыванию предельной полезности порций благ, приобретаемых за единицу денег. Первый номер получит благо, обладающее наибольшей предельной полезностью на единицу цены, второе – меньшей, чем первое, но большей, чем все остальные, и т. д.

На первом шаге потребитель купит порцию первого блага; при этом предельная полезность этого блага уменьшится. Если в расчете на единицу цены она осталась выше, чем у второго блага, то на втором шаге потребитель снова купит первое благо и т.д. до тех пор, пока предельные полезности на единицу цены первого и второго благ не сравняются. Далее он станет покупать первое и второе блага вместе до тех пор, пока их предельные полезности на единицу цен не упадут до предельной полезности на единицу цены третьего блага и т. д. При завершении покупок предельные полезности на единицу цены всех купленных благ будут равны.

Введем обозначения i=1, …, n – номер блаФ о р м а л ь н о е га, входящего в набор.

и з л о ж е н и е n - общее число благ в наборе потребителя;

Qi - количество i-го блага в наборе;

(Q1, …Qi, …Qn) - набор благ;

Pi - цена i-го блага в наборе;

I - бюджет потребителя, то есть сумма денег, которой он располагает для покупок;

MUi - предельная полезность единицы (килограмма, метра, штуки и т. д.) i-го блага;

MUi/Pi - предельная полезность порции i-го блага, которую можно приобрести за единицу денег, или предельная полезность денег при покупке i-го блага.

Израсходовав сумму денег I, нужно приобрести набор благ, обладающий для потребителя наибольшей суммарной полезностью.

Стратегия потребителя заключается в следующем. Зная свои запасы, он оценивает предельную полезность каждого блага MUi и для каждого вычисляет величину MUi/Pi. Затем потребитель сортирует все блага в порядке убывания величины MUi/Pi и перенумеровывает их в этом порядке. Состояние потребителя в начале покупок можно описать следующим выражением:

MU1/P1 MU2/P2 … MUi/Pi …MUn/Pn. (1) На первом шаге потребитель покупает первое благо, при этом MU1 уменьшается, а P1 остается без изменения. Если сохраняется неравенство MU1/P1>MU2/P2, то и на втором шаге покупается первое благо, и так до тех пор, пока не наступит равенство MU1/P1=MU2/P2.

Далее покупаются вместе первое и второе блага, пока не наступит равенство MU1/P1=MU2/P2=MU3/P3. Теперь будут покупаться первые три блага и т.д. Если денег достаточно, то при завершении покупок наступит равенство:

MU1/P1=MU2/P2= … =MUi/Pi= … =MUn/Pn. (2) Выражение (2) описывает состояние равновесия потребителя на потребительском рынке. Словесно это состояние можно выразить следующим образом: потребитель находится в состоянии равновесия, когда предельные полезности всех купленных им благ, приходящиеся на единицу их цен, равны. Если денег недостаточно, чтобы провести процесс выравнивания до конца, т.е. до n-го блага, то все не купленные блага исключаются из набора. Пусть, например, денег достаточно только, чтобы купить k благ. Тогда от i=k+1 до i=n все Qi=0. В наборе остаются блага от i=1 до i=k, и для всех них справедливо выражение (2). Выражение (2), описывающее состояние равновесия потребителя на потребительском рынке, называется вторым законом Госсена.

4. Г Е О М Е Т Р И Я П О Т Р Е Б Л Е Н И Я Все проблемы потребительского поведения Н а б о р б л а г можно обсуждать с помощью геометрических представлений. Чтобы все было наглядно, изображать нужно на плоскости с помощью графиков. Для этого придется рассматривать простейшие наборы, состоящие из двух благ, но все выводы будут справедливы для любого количества благ в наборе.

Рис. 6.

На рис. 6 по оси абсцисс (горизонтальной) откладывается количество первого блага (Q1), а по оси ординат (вертикальной) – количество второго блага (Q2). Любая точка на плоскости между осями Q1 и Q2 изображает набор благ. Так, точка А изображает набор, в который первое и второе блага входят соответственно в количестве Q1A и Q2A.

Рис. 7.

На рис. 7 через точку А проведем вертикальную и горизонтальную линии, которые разобьют область положительных значений Q1 и Q2 на четыре квадранта. Пронумеруем эти квадранты цифрами I, II, III и IV. Любая точка в квадранте I, например точка В, изображает набор, в котором количества благ Q1В и Q2В меньше, чем соответствующие количества благ в наборе А: Q1В < Q1A и Q2В Q1A и Q2D >Q2A. В квадрантах II и IV находятся наборы, для которых нет явного предпочтения при сравнении их с набором А. Во II квадранте по сравнению с набором А больше первого блага, но меньше второго. Для точки С справедливо: Q1С > Q1A и Q2С Q2A.

Предложим потребителю сделать выбор К р и в а я между двумя любыми наборами благ. У б е з р а з л и ч и я потребителя могут быть только два решения: он либо предпочтет один из них, либо заявит, что эти наборы для него равнополезны. На рис. 7 любому набору из первого квадранта потребитель предпочтет набор А. Набору А предпочтет любой набор из третьего квадранта. А вот результат сравнения набора А с любыми наборами из второго и четвертого квадрантов неочевиден. В этих квадрантах находятся наборы как равнополезные набору А, так и обладающие большей и меньшей полезностью с точки зрения потребителя.

Рис. 8.

Pages:     | 1 || 3 | 4 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.