WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |
В. В. Лидовский ТЕОРИЯ ИНФОРМАЦИИ В. В. ЛИДОВСКИЙ ТЕОРИЯ ИНФОРМАЦИИ Допущено учебно-методическим объединением вузов по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению 654600 — Информатика и вычислительная техника, специальности 220200 — Автоматизированные системы обработки информации и управления МОСКВА 2004 Лидовский В. В. Теория информации: Учебное пособие. — М.: Компания Спутник+, 2004. — 111 с. — ISBN 5-93406-661-7.

Электронная версия от 23.11.2004 В учебном пособии излагаются основные понятия и факты теории информации. Рассмотрены способы измерения, передачи и обработки информации. Значительное внимание уделено свойствам меры информации, характеристикам канала связи, помехозащитному, уплотняющему и криптографическому кодированию. Кроме того, рассмотрены вопросы формализации информации, в частности, в документах Internet. Изложение сопровождается большим количеством примеров и упражнений.

Для студентов втузов соответствующих специальностей и всех интересующихся вопросами точной работы с информацией и методами построения кодов с полезными свойствами.

Библиогр. 23 назв. Ил. 28.

РЕЦЕНЗЕНТЫ: Кафедра “Управления и моделирования систем” Московской государственной академии приборостроения и информатики (зав. кафедрой — д-р. тех.

наук С. Н. Музыкин), доцент Н. Я. Смирнов Для подготовки издания использовались системы plain TEX, AMS-Fonts, PICTEX и TreeTEX ББК 32.811 Л 55 Введение Учебное пособие написано на основе односеместрового 108 часового курса лекций и материалов для практических занятий, используемых автором в учебной работе со студентами-третьекурсниками в течении 5 лет на кафедре “Моделирование систем и информационные технологии” «МАТИ» — Российского государственного технологического университета им. К. Э. Циолковского.

Настоящее пособие достаточно полно освещает основные положения теории информации в соответствии с Государственным образовательным стандартом РФ от 1995 г. по специальности “Автоматизированные системы обработки информации и управления” (220200). Содержание некоторых глав (2, 9, 33–36) пособия выходит за рамки стандарта для означенной специальности, но затронутые в них темы актуальны и органично вписываются в материал пособия.

Содержание пособия во многом базируется на некоторых вводных понятиях курса “Теория вероятностей”: дискретная случайная величина (д.с.в.), закон распределения вероятностей, математическое ожидание (м.о.) и т.п. Кроме того, от читателя требуется умение выполнять соответствующие операции с матрицами, многочленами и булевыми величинами.

В главах с 1 по 9 рассмотрены общие вопросы, определяющие практические подходы к использованию понятия информация, т.е. дано определение основных терминов, используемых при работе с информацией, очерчен круг вопросов, рассматриваемых в теории информации, приведены способы хранения, обработки, преобразования, передачи и измерения информации.

В главах 10–18 рассматриваются способы сжатия информации.

Рассмотрены как статистические методы (Шеннона-Фэно, Хаффмена, арифметический), так и словарные методы Лемпела-Зива. Для статистических методов приведены варианты адаптивных алгоритмов кодирования. Приводятся формулы для оценки предельной степени сжатия информации. Обзорно рассматриваются способы сжатия информации с потерями и типы файлов, содержащих сжатые данные.

Глава 19 посвящена физическому уровню передачи информации по каналам связи. Рассматриваются методы расчета пропускной способности (емкости) канала, теорема Шеннона и обратная ей теорема, способы кодирования дискретной информации для передачи. Полное раскрытие названных тем требует привлечения мощного аппарата средств теории вероятностей и теории связи, выходящих за рамки соответствующих курсов студентов втузов, поэтому эти темы раскрыты лишь частично, в обзорном порядке.

В главах 20–27 рассматриваются способы построения и использования избыточных кодов для защиты от помех. Приводятся фундаментальные характеристики таких кодов. Для понимания материала 23-й главы необходимо знакомство с начальными элементами теории групп.

Главы 28–32 посвящены вопросам теории защиты информации.

Рассматриваются как классические криптографические системы, так и системы, построенные на идеях Диффи и Хеллмана. Кратко математический фундамент этих методов излагается в Приложении Д.

В заключительных главах рассмотрены некоторые вопросы использования информации в Internet.

Используемые обозначения, не определенные явно в основном материале, приводятся в Приложении Е.

Ссылки на литературу из Приложения Ж, содержащую обоснования приведенных фактов или дополнительные подробности, заключаются в квадратные скобки.

Высокая требовательность студенческой аудитории является постоянным стимулом в поиске более простых, доходчивых и ясных способов изложения. Автор надеется, что это учебное пособие, формировавшееся в процессе живого общения со студентами, не получилось чрезмерно сложным.

Автор считает необходимым выразить искреннюю благодарность всем тем, кто помог ему в создании этого пособия, в особенности, Пантелееву П. А., Лидовской В. В. и Бурашникову С. Р.

1. Предмет и основные разделы кибернетики Теория информации рассматривается как существенная часть кибернетики.

Кибернетика — это наука об общих законах получения, хранения, передачи и переработки информации. Ее основной предмет исследования — это так называемые кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем: автоматические регуляторы в технике, ЭВМ, мозг человека или животных, биологическая популяция, социум.

Часто кибернетику связывают с методами искусственного интеллекта, т. к. она разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основными разделами (они фактически абсолютно самостоятельны и независимы) современной кибернетики считаются: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления и теория распознавания образов.

Родоначальниками кибернетики (датой ее рождения считается 1948 год, год соответствующей публикации) считаются американские ученые Норберт Винер (Wiener, он — прежде всего) и Клод Шеннон (Shannon, он же основоположник теории информации).

Винер ввел основную категорию кибернетики — управление, показал существенные отличия этой категории от других, например, энергии, описал несколько задач, типичных для кибернетики, и привлек всеобщее внимание к особой роли вычислительных машин, считая их индикатором наступления новой НТР. Выделение категории управления позволило Винеру воспользоваться понятием информации, положив в основу кибернетики изучение законов передачи и преобразования информации.

Сущность принципа управления заключается в том, что движение и действие больших масс или передача и преобразование больших количеств энергии направляется и контролируется при помощи небольших количеств энергии, несущих информацию. Этот принцип управления лежит в основе организации и действия любых управляемых систем:

автоматических устройств, живых организмов и т. п. Подобно тому, как введение понятия энергии позволило рассматривать все явления природы с единой точки зрения и отбросило целый ряд ложных теорий, так и введение понятия информации позволяет подойти с единой точки зрения к изучению самых различных процессов взаимодействия в природе.

В СССР значительный вклад в развитие кибернетики внесли академики Берг А. И. и Глушков В. М.

В нашей стране в 50-е годы кибернетика была объявлена лженаукой и была практически запрещена, что не мешало, однако, развиваться всем ее важным разделам (в том числе и теории информации) вне связи с обобщающим словом “кибернетика”. Это было связано с тем, что сама по себе кибернетика представляет собой род философии, в коечем конфликтной с тогдашней официальной доктриной (марксистсколенинской диалектикой).

Теория информации тесно связана с такими разделами математики как теория вероятностей и математическая статистика, а также прикладная алгебра, которые предоставляют для нее математический фундамент. С другой стороны теория информации исторически и практически представляет собой математический фундамент теории связи.

Часто теорию информации вообще рассматривают как одну из ветвей теории вероятностей или как часть теории связи. Таким образом, предмет “Теория информации” весьма узок, т.к. зажат между “чистой” математикой и прикладными (техническими) аспектами теории связи.

Теория информации представляет собой математическую теорию, посвященную измерению информации, ее потока, “размеров” канала связи и т. п., особенно применительно к радио, телеграфии, телевидению и к другим средствам связи. Первоначально теория была посвящена каналу связи, определяемому длиной волны и частотой, реализация которого была связана с колебаниями воздуха или электромагнитным излучением. Обычно соответствующий процесс был непрерывным, но мог быть и дискретным, когда информация кодировалась, а затем декодировалась. Кроме того, теория информации изучает методы построения кодов, обладающих полезными свойствами.

2. Формальное представление знаний При формальном представлении знаний каждому описываемому объекту или понятию ставится в соответствие некоторый числовой код.

Связи между кодируемыми сущностями также представляются кодами (адресами и указателями). Для такого перевода неформальных данных в формальный, цифровой вид должны использоваться специальные таблицы, сопоставляющие кодируемым сущностям их коды и называемые таблицами кодировки. Простейший пример такой таблицы — это ASCII (American Standard Code for Information Interchange), используемая повсеместно с вычислительной техникой. Она сопоставляет печатным и управляющим символам (управляющими являются, например, символы, отмечающие конец строки или страницы) числа от 0 до 127.

Следующая программа на языке Паскаль выведет на экран все печатные символы этой таблицы и их коды:

var i: byte;

begin for i := 32 to 126 do write(i:6, chr(i):2);

writeln end.

На практике обычно используют не сам исходный ASCII, а так называемый расширенный ASCII (ASCII+), описывающий коды 256 символов (от 0 до 255). Первые 128 позиций расширенного ASCII совпадают со стандартом, а дополнительные 128 позиций определяются производителем оборудования или системного программного обеспечения. Кроме того, некоторым управляющим символам ASCII иногда назначают другое значение.

Хотя таблицы кодировки используются для формализации информации, сами они имеют неформальную природу, являясь мостом между реальными и формальными данными. Например, коду 65 в ASCII соответствует заглавная латинская буква A, но не конкретная, а любая.

Этому коду будет соответствовать буква A, набранная жирным прямым шрифтом, и буква A, набранная нежирным с наклоном вправо на 9.5 шрифтом, и даже буква A готического шрифта. Задача сопоставления реальной букве ее кода в выбранной таблице кодировки очень сложна и частично решается программами распознания символов (например, Fine Reader).

Упражнение Каков код букв W и w в ASCII 3. Виды информации Информация может быть двух видов: дискретная (цифровая) и непрерывная (аналоговая). Дискретная информация характеризуется последовательными точными значениями некоторой величины, а непрерывная — непрерывным процессом изменения некоторой величины. Непрерывную информацию может, например, выдавать датчик атмосферного давления или датчик скорости автомашины. Дискретную информацию можно получить от любого цифрового индикатора: электронных часов, счетчика магнитофона и т.п.

Дискретная информация удобнее для обработки человеком, но непрерывная информация часто встречается в практической работе, поэтому необходимо уметь переводить непрерывную информацию в дискретную (дискретизация) и наоборот. Модем (это слово происходит от слов модуляция и демодуляция) представляет собой устройство для такого перевода: он переводит цифровые данные от компьютера в звук или электромагнитные колебания-копии звука и наоборот.

При переводе непрерывной информации в дискретную важна так называемая частота дискретизации, определяющая период (T = 1/) между измерениями значений непрерывной величины (см. рис. 1).

Исходный сигнал.................

............

..

....

.........................

.

...............

.........

• •....

.......

.

.

.

.

......

.

......

.

.

.

.

.

.

......

.

.

.....

.

.....

.

.

.

...

...

.

........

.

.

.

.....

.....

.

.

.....

.....

........

.

.

....

....

.

....

• •. • t.

.

.....

.....

.....

.

.

.

.....

.....

......

..

..

..

.

......

.....

......

.

.

.

.

..

..

..

.

......

......

...........................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................

.........

....

...

.

...

...

.

.

.

.

.

.....

.....

.....

.

.....

.

......

......

..

..

..

..

.....

..........

......

..............................

...............................

...

..

..

..

..

..

..

..

.....

..........

.........

.

.

.....

.

.

•....

. •.

....

.

.

.

.

.....

.

.....

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

T...............

...............

......

..........................

..................

...

.

.......

.

•.....................

• Дискретизированный сигнал • • • • • t.

.

.

.

.

.

.

.

Pages:     || 2 | 3 | 4 | 5 |   ...   | 14 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.