WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 35 | 36 || 38 | 39 |   ...   | 43 |

· · · · · · · · Как видим, при переходе в ускоренные базисы исконная метрика базового пространства событий сохраняется. Применение гауссовых криволинейных координат даже в плоском пространстве-времени Минковского с целью анализа ускоренных движений со всей необходимостью ведёт к привлечению для его математического описания абсолютного тензорного исчисления Риччи. В мгновенном базисе m гауссовы криволинейные координаты имеют аффинную связность, определяемую в них же через переменный тензор G(i) пространствавремени Минковского (или метрический тензор инерции). Последний действует как функция в каждой мировой точке М. Существенно здесь то, что тензор кривизны Римана – Кристоффеля необходимо нулевой в силу того, что базовое пространство-время по сути плоское. Искривление координатной сетки в движущейся системе m происходит строго по отношению к наблюдателю Nm, находящемуся всегда в центре мгновенного базиса. С его смещением в собственном базисе указанное искривление координат смещается точно также.

(В точке нахождения наблюдателя Nm тензор тот же – I.) С точки зрения галилеевски инерциального наблюдателя Nj никакого искривления координат в мгновенной системе m вообще не происходит;

здесь местоположение наблюдателя Nm не имеет никакого значения.

Например, движущийся ускоренно вместе с Nm прямой стержень так и воспринимается наблюдателем Nj как прямолинейный. Но при Глава 9А. Необходимо ли искривление пространства-времени этом неинерциальный наблюдатель Nm может воспринимать его опосредованно в m как искривлённый объект. Описанный релятивистский эффект имеет чисто координатную природу. Каких-либо дополнительных механических напряжений от кажущегося искривления стержня в m не возникает. Ведь одни и те же собственные силы в любых системах отсчёта, по-прежнему, определяются тождественно как абсолютные характеристики в ‹P 3+1›.

Симметричный метрический тензор G для представления квадратичной формы интервала как скалярного произведения первых дифференциалов определяется совершенно независимо через первые дифференциалы линейного элемента, выраженные в контравариантных и в ковариантных координатах:

ducov dl2 = ducon ducov ducov ducon = ducon ducon = ducon G ducon · · ducon ducon ducov ducov = ducov ducov, где = G–1.

ducov В ускоренной системе отсчёта m действует искажённая псевдоевклидова геометрия Минковского с переменным метрическим тензором G(i) в криволинейных координатах и с нулевым повсюду тензором кривизны Римана – Кристоффеля. Роль тензорного аналога абсолютного векторного ускорения в системе m выполняют символы Кристоффеля.

В процессе создания ОТО (с 1913г.) Эйнштейн пришёл к выводу [49], что метрика реального пространства-времени в присутствии поля тяготения в произвольно движущейся системе отсчёта задаётся тоже двухвалентным симметричным тензором G, при этом тяготение и инерция как тензоры локально неразличимы между собой (принцип эквивалентности). Это содержало существенное расширение закона о тождестве инерционной и тяготеющей масс. По Эйнштейну метрический тензор пространства-времени и приведенный тензорный потенциал обобщённого G-поля суть простые аналоги. Отсюда в ОТО неизбежно вытекало искривление реального пространства-времени и его более сложный – псевдориманов характер. Это привело к её натуральной геометризации. Гравитация стала геометрическим понятием.

Слияние в одном и том же качестве активной и пассивной гравитации означало, прежде всего, признание инерции и ускорения такими же относительными понятиями как движение и скорость. В этом проявился общий принцип относительности Эйнштейна. Свободно движущиеся системы отсчёта в ОТО стали как бы равноправны между собой. Это вылилось маргинально в широко известное и весьма по научному честное утверждение Эйнштейна о равноправии систем Коперника 288 Приложение. Тригонометрические модели движений и Птолемея. А именно метрический тензор в них имеет локально стандартную форму I в силу компенсации инерции и тяготения.

Поэтому все физические законы сохраняют также стандартную форму.

Но, во-первых, здесь был явный отказ от принципа Маха, определившего инерцию абсолютно – в галилевски инерциальной системе отсчёта 0. Во-вторых, здесь нарушался принцип соответствия, так как при отсутствии активного гравитационного воздействия невозможно сделать вывод: в какой же по характеру системе отсчёта оказывается движущаяся материальная точка – галилеевски инерциальной или неинерциальной, как об этом судят в СТО по символам Кристоффеля.

Сразу же заметим, что на более простой путь обобщения теории относительности с дополнительным учётом поля тяготения и силовых полей иного рода как материальных явлений указывал Пуанкаре ещё в 1905г. [39]. Во второй половине ХХ века интерес к чисто полевой (негеометрической) концепции гравитации возрождается вновь [53, 64].

Впервые (1976 г.) эта концепция довольно обстоятельно была изложена Боулером в его известной фундаментальной учебной монографии [8].

В ней он вовсе не стремится опровергнуть ОТО, но в предисловии осторожно замечает: “Поскольку физика – наука экспериментальная, не исключено, что в один прекрасный день чисто геометрический подход окажется неадекватным.” Боулер последовательно развивает обобщение закона тяготения Ньютона и уравнения Пуассона для гравитации с учётом тех поправок, которые вносит именно СТО. Аналогией этому для него послужило соответствующее обобщение закона Кулона и уравнения Пуассона для электростатики при построении классической релятивистской электродинамики, где источником поля является сохраняющийся вектор электромагнитного тока. Принципиальное отличие заключается лишь в том, что применительно к гравитации источником поля принимается сохраняющийся тензор энергии-импульса (материи и поля). В итоге Боулер рассматривает тяготение как классическое поле, соответствующее специальным частицам – гравитонам со спином (точнее 2 или 0). В такой полевой релятивистской теории гравитации (РТГ) базовое пространство-время Минковского сохраняет полностью координатно-описательное значение, как в СТО. Но псевдодекартовы системы координат, будучи помещёнными в гравитационное поле, деформируются с точки зрения весьма удалённого галилеевски инерциального наблюдателя. В частности, с его точки зрения в гравитационном поле замедляется течение собственного времени.

С 80-х годов ХХ века появляются более решительные по изложению (а именно с полным отрицанием ОТО) публикации Логунова с рядом соавторов. Недавно они были подытожены в фундаментальной монографии Логунова [33]. В ней наряду с обстоятельным критическим Глава 9А. Необходимо ли искривление пространства-времени анализом ОТО (с неопределённым, псевдоримановым искривлением пространства-времени) дана концептуально аналогичная указанной, но значительно более развитая по построению РТГ. Тяготение чётко отделено от инерции как совершенно иное и материальное понятие, определяемое именно в базовом пространстве-времени Минковского.

Принцип эквивалентности не действует. Эта теория, вполне корректно обобщающая СТО в гравитационном поле, по сути – релятивистская небесная механика (если в терминологии строго следовать Лапласу).

Вернёмся к теории в версии Эйнштейна. Вследствие натуральной геометризации ОТО возникла её логическая неувязка с исходной СТО. Почему активное гравитационное воздействие (тяготение) в ОТО должно обязательно искривлять метрическое пространствовремя, а априори эквивалентное ему пассивное гравитационное воздействие (инерция) подобного искривления в СТО не вызывает Ввиду такого явного несоответствия между СТО и ОТО Эйнштейн принял концепцию, что инерция может эквивалентным образом локально искривлять пространство-время, как тяготение, и поэтому они на дифференциальном уровне неразличимы между собой. Отсюда следовала как бы неприменимость СТО к описанию движений в ускоренных системах отсчёта даже в отсутствие поля тяготения, что весьма странно! Такая концепция, кстати, в полной мере отвечала позитивистской философии Маха и его склонности к римановой геометрии Вселенной. Поэтому, согласно Эйнштейну, СТО действует в ОТО только на инфинитезимальном уровне, а ‹P 3+1› с преобразованиями Лоренца в нём всегда мгновенное и касательное в каждой мировой точке искривлённого пространства-времени (подобно касательной к кривой, самой по себе). Следовательно, система Маха 0 каждый раз какая-то новая, не привязанная к чему-либо материальному, то есть надобность в ней в ОТО попросту отпадает.

В связи с той же антитезой отметим, что при дальнейшем развитии ОТО на основе принципа эквивалентности и натуральной геометризации прежде всего Гильбертом [17] в 1915–1917 гг. в результате анализа им же впервые полученных общерелятивистских уравнений движения было установлено противоречие новой теории фундаментальным интегральным законам сохранения энергии-импульса и момента количества движения в замкнутой материальной системе. Эти законы сохранения в ОТО действуют только локально в касательном ‹P 3+1›. Гильберт отметил это как “характерную черту ОТО” (цитата).

По существу такое отклонение с математической точки зрения вызвано отсутствием в ОТО десятипараметрической группы движений, свойственной плоскому пространству-времени Минковского, вследствие трансформации последнего в поле тяготения в искривлённое 290 Приложение. Тригонометрические модели движений псевдориманово пространство-время [32, с.163]. Позже его знаменитая ученица Амали Эмми Нётер (1918 г.) сформулировала фундаментальную теорему математической физики, связывающую интегральные законы сохранения движения непосредственно с параметрами симметрии базового метрического пространства-времени. Ввиду того что псевдориманово пространство-время неоднородно и неизотропно, в нём эти законы не могут соблюдаться принципиально. Поэтому в ОТО нужно было либо отказаться от интегральных законов сохранения движения, либо найти какие-нибудь модифицированные аналоги вышеуказанным сохраняющимся величинам в искривляемом гравитацией пространствевремени. Первый путь обосновывал бы в ином – уже в космическом масштабе всё тот же perpetuum mobile. Второй путь неизбежно ведёт к дальнейшему чрезмерному усложнению самой теории тяготения.

В свою очередь, принцип эквивалентности, согласно Эйнштейну, постулирует неразличимость “поля инерции” и поля тяготения на локальном уровне как G G(i) G(f) в силу их тождественной гравитационной природы. Но характер такого обобщённого G-поля в ОТО математически определяется значимостью тензора кривизны Римана – Кристоффеля [42, с. 9]. Нулевой тензор кривизны отвечает отсутствию именно поля тяготения. С другой стороны, ненулевой тензор кривизны отвечает наличию реального поля тяготения. В первом случае при любых проявлениях только сил инерции степень свободы функционального изменения метрического тензора как совокупности скалярных элементов значительно меньше, чем таковая во втором случае – при любых реальных проявлениях только сил тяготения.

Рассмотрим это на дифференциально-геометрическом уровне.

* * * Риманово пространство, как известно [21], имеет инфинитезимально евклидову метрику. Но в силу его кривизны уже для вторых дифференциалов протяжённости в нём проявляются отклонения от евклидовой метрики, что функционально выражают символы Кристоффеля. Кроме того, римановы пространства в целом могут иметь значительно более разнообразные топологические формы, нежели евклидово пространство. Конкретное вещественное риманово пространство размерности m может быть вложено без изменения его внутренней геометрии и топологических свойств в некоторое евклидово надпространство ‹E n›. Причём минимальный порядок вложения nmin априори находится в интервале от m до.

Особо отметим то, что характеристика nmin определяется в совокупности внутренней геометрией и топологией риманова m-пространства.

Глава 9А. Необходимо ли искривление пространства-времени Например, двумерная псевдосфера Бельтрами (гл. 6А) есть риманово 2-пространство постоянной отрицательной кривизны, топологически эквивалентное цилиндру (без оснований). Она имеет значение nmin = 3.

С другой стороны, поверхность Лобачевского – Больяи есть риманово 2-пространство постоянной отрицательной кривизны, топологически эквивалентное аффинной плоскости. Она имеет nmin > 3. Чтобы её вложить и описать в каком-то ‹E n› (обобщённая задача Бельтрами), значение nmin должно быть не менее 4-х – см. гл.12. Возможно, что с этой целью её нужно представить как закрученную двумерную поверхность с главными радиусами кривизны «+ R» и «- R» (псевдосферу с аффинной топологией). Задача Бельтрами обобщается аналогично и дальше при m > 2. Но она относилась только к евклидову надпространству.

В более подходящем тут псевдоевклидовом метрическом надпространстве ‹P m+1› m-поверхность Лобачевского – Больяи отображается в целом изометрично на верхнюю часть гиперболоида II Минковского при nmin = m + 1. В этом же надпространстве изометрично в целом отображается m-псевдосфера Бельтрами на гиперболоид I Минковского (гл. 6А). В свою очередь, “m-гофра” есть риманово пространство нулевой кривизны и топологически эквивалентное аффинному m-пространству. Она отображается изометрично в целом на ‹E n› или на ‹P n›, то есть при nmin = m.

Но классическая общая риманова геометрия имеет чётко выраженный дифференциальный характер, определяемый изначально через метрический тензор G или G как матричную функцию точечного элемента (псевдо)риманова пространства. Это есть по изначальной своей сути внутренняя геометрия в малом. В таком ракурсе общая риманова геометрия существенно отличается от однородных геометрий в целом, в которых особое значение имеют понятия: “группы движений”, “свобода движения фигур”, “топологические свойства”. К таковым целостным и однородным геометрическим системам относятся, например, евклидова и псевдоевклидова геометрии, эллиптическая геометрия Римана, гиперболическая геометрия Лобачевского – Больяи, в том числе изоморфная ей геометрия гиперболоида II (гл. 12). Понятие “вложимость” по отношению к (псевдо)евклидову надпространству для (псевдо)риманова метрического пространства в целом с неопределённой топологией не имеет какого-либо смысла. Это, в частности, сказывается также на неопределённости для него значения nmin. Но если ограничиться изучением только какой-либо топологически аффинно-эквивалентной области (псевдо)риманова m-пространства, то тогда значение nmin будет всецело определяться его локальными дифференциально-геометрическими свойствами.

Pages:     | 1 |   ...   | 35 | 36 || 38 | 39 |   ...   | 43 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.