WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 20 | 21 || 23 | 24 |   ...   | 43 |

Гиперболическая траектория, или геодезическая (прямая) на гиперболоидах I и II всегда представима как их сечение некоторой централизованной псевдоплоскостью. Ей же тождественна собственная псевдоплоскость тензорного угла Г в ротационной матрице {roth Г}, в которой проецируются тригонометрические функции тангенса и котангенса. (Именно в этом состоит причина прямолинейности проекций геодезических в обеих моделях Клейна!) При этом гиперболический угол в матрице может быть задан параметрически через псевдоевклидову длину геодезической: = a / R и Г = A / R. В модели Клейна внутри абсолюта это сечение-геодезическая вместе с псевдоплоскостью (в границах сечения) проецируется в евклидов отрезок прямой, проходящей через круг (2-х мерный вариант) или шар (3-х мерный вариант) в овальном абсолюте. Геодезическая в целом отображается соответствующей хордой. Заметим также, что углы между геодезическими в модели Клейна не искажаются § 12.1. Проективные модели сопутствующих геометрий при условии, что проективные прямые (для гиперболоида II) или их формальные продолжения (для гиперболоида I) встречаются в центре абсолюта. Для гиперболоида II это тождественно принадлежности его центрального элемента u1 (рис. 4) пересекающимся геодезическим.

В данном случае матрица ротации {roth Г}1 симметрична и имеет каноническую форму (363), задавая движение центрального исходного элемента u1 по централизованной геодезической. Для произвольного элемента этого гиперболоида u2 = roth Г12·u1 ротационная матрица преобразуется координатно пассивно из симметричной, а именно как {roth Г12·roth Г·roth-1 Г12}1, задавая его движение по произвольной геодезической. Здесь и выше излагается общий подход к изучению гиперболических движений в обеих сопутствующих неевклидовых геометриях как некоторого тригонометрического подмножества преобразований Лоренца, то есть с применением тензорной тригонометрии объемлющего псевдоевклидова пространства.

Если геометрический центр хорды исходя из центра проектирования принять за точку начала отсчёта функции th < + 1 (условно справа) и th > - 1 (условно слева), то евклидово расстояние по внутренней хорде-геодезической в модели Клейна внутри абсолюта связано с истинным псевдоевклидовым или неевклидовым расстоянием мерой Ламберта по формуле (2 > 1):

1 + th 2 - ln 1 + th a12 = a2 - a1 = R· (2 - 1) = R· 12 = 1/2 R· ln [ ] 1 - th 2 1 - th 1 = (1 + th 2) (1 - th 1) · = R·ln.

(1 - th 2) (1 + th 1) Соответственно евклидово расстояние по внешней хордегеодезической в модели Клейна вне абсолюта связано c неевклидовым расстоянием соотношением:

(cth 2 + 1) (cth 1 - 1) · a12 = R·ln.

(cth 2 - 1) (cth 1 + 1) Обе формулы получены тригонометрическим способом, но изначально они исходят из проективного мероопределения Кэли - Клейна.

(Формула искажения сферического угла между прямыми в модели Клейна в гиперболической трактовке дана в гл. 7А Приложения.) Идея о возможности реализации полноценной геометрии, в которой не выполняется V-ый постулат Евклида, или справедлива гипотеза острого угла Саккери, на особой поверхности - “какой-нибудь мнимой сфере” (цитата), как известно, впервые была высказана Ламбертом в 1766 г. [21, 24]. Впоследствии было уточнено, что первое её свойство относится к геометрии в большом, а второе – к геометрии в малом.

176 Глава 12. Тригонометрия псевдоевклидова пространства Минковского (В полноценной геометрии – с полной свободой движения фигур они взаимосвязаны.) Тауринус предложил аналитическую модель такой геометрии на гипотетической сфере мнимого радиуса по аналогии с геометрией вещественной сферы. Тем самым он обосновал непротиворечивость её планиметрии. Интуитивная геометрия Ламберта– Тауринуса предвосхитила реальную геометрию на гиперболоиде II и исторически предшествующий ей вещественный изоморфизм – геометрию Лобачевского – Больяи [7, 24, 31]. Бельтрами показал её реализуемость, но как геометрии в малом, на особой гиперповерхности евклидова пространства – псевдосфере (которую ранее открыл и изучил Миндинг). Проективная модель Бельтрами – Клейна свёла проблему её непротиворечивости в целом к таковой для евклидовой геометрии.

Гильберт доказал невозможность реализации в трёхмерном евклидовом пространстве двумерной геометрии Лобачевского – Больяи в целом на какой-то вложенной в него неособой римановой поверхности, то есть как внутренней геометрии Гаусса [25, 26].

Однако последнее вовсе не означает невозможность её реализации в целом на какой-то неособой римановой поверхности, вложенной в (3 + k)-мерное евклидово надпространство. Как известно [13], такая поверхность определяется постоянной и отрицательной римановой кривизной. Но если бы удалось описать её как вложение в евклидово надпространство минимальной размерности, то тогда решение задачи Бельтрами [21] было бы доведено до логического конца. Конкретные результаты в этом направлении получили последовательно Блануша – 6 5 для ‹E ›, Розендорн – для ‹E › и Сабитов – для ‹E › [40, 41]. (Та же проблема остаётся и для вложения неевклидовых пространств в целом.) Хорошо известно, что определение римановой поверхности и её геометрии оторвано не от объемлющего евклидова надпространства, а только от его размерности. Апостериори размерность последнего может быть вполне определённой. С другой стороны, имманентная размерность римановой поверхности всегда одна и та же для любого её гомеоморфизма. Она совпадает с размерностью касательного евклидова пространства, обобщившего одномерную касательную к кривой, самой по себе. Из напрашивающейся здесь аналогии достаточно указать, что бесконечная регулярная кривая с постоянной сферической кривизной не реализуется на плоскости, но зато она реализуется в трёхмерном евклидовом пространстве в виде винтовой линии. Такого же типа кривая, но с постоянной гиперболической кривизной реализуется на псевдоплоскости в виде гиперболы. Изометричные отображения одной и той же неевклидовой геометрии на различных поверхностях:

гиперболоиде II Минковского, плоскости Лобачевского – Больяи, римановой поверхности с постоянной отрицательной кривизной – отличаются весьма значительно по степени сложности и наглядности.

§ 12.1. Проективные модели сопутствующих геометрий С другой стороны, сопутствующая цилиндрическая гиперболическая геометрия реализуется как в псевдоевклидовом пространстве – на гиперболоиде I Минковского, так и в вещественном евклидовом пространстве – на гиперпсевдосфере Бельтрами как изоморфизмы. Эти гиперболические геометрии имеют один и тот же характеристический радиус и гомеоморфны по топологии своих подпространств.

Рассекая проективный гиперцилиндр какой-либо централизованной псевдоплоскостью, получаем в сечении четыре смежных бесконечных прямых в 3-х гиперболических пространствах. В данном отображении они образуют замкнутую фигуру – четырёхугольник. Его четыре вершины лежат попарно на двух овальных абсолютах – верхнем и нижнем.

Каждая из этих четырёх прямых с заданным центром проектирования однозначно задаёт три других и секущую псевдоплоскость.

Точечные элементы на гиперболоидах Минковского I и II исходно определяются внешними, псевдодекартовыми координатами ‹x 1,n, y›, например в 1 = {I}. Кроме того, они также взаимно-однозначно исходно определяются специальными угловыми координатами, но уже на конкретном гиперболоиде Минковского. Последний в задаётся радиус-вектором (iR – гиперболоид II, R – гиперболоид I).

Для элементов гиперболоида II y – реперная косинусная ось (+y на верхней части и –y на нижней части). Для элементов гиперболоида I y – синусная ось. Внутренние угловые координаты включают в себя параметры: гиперболический угол с учётом знака для обеих частей гиперболоида (отмеряемый от реперной оси y для гиперболоида II n и от реперной гиперплоскости «E » для гиперболоида I) и его n же направляющие косинусы ‹cos 1,n›. Ввиду того что cos2 k = 1, k = для задания элемента достаточно n независимых угловых координат.

Между точками одного и того же гиперболоида устанавливается парное соответствие из условия равенства их дополнительных друг к другу гиперболических угловых координат и направляющих косинусов (рис.4): u2 u3, v2 v3 (u u, v v ); 12 = 13 12 = 13, = Arsh 1, cos = const k k.

Между точками различных гиперболоидов I и II также устанавливается парное соответствие. Оно задаётся из условия равенства их одноимённых друг к другу гиперболических угловых координат и направляющих косинусов (рис.4): u2 v2, u3 v3 (u v );

12II = 12I =, 13I = 13II =, cos = const.

12II 12I 13II 13I k k С геометрической точки зрения такое соответствие означает зеркальную симметрию пары точечных элементов ut и vt относительно изотропного конуса.

178 Глава 12. Тригонометрия псевдоевклидова пространства Минковского Отметим одно исключение: точечный элемент u1 отображается в u и в v1 только при задании направляющих косинусов; обратно же:

u u1, v1 u1. (Но v1 v, cos k = const.) k В связи с этим каждая прямая (геодезическая) гиперболоида II взаимно-однозначно отображается через изотропный конус в прямую (геодезическую) гиперболоида I, а в модели Клейна – через овальный абсолют. В тангенсном отображении гиперболоида II (II ) и в котангенсном отображении гиперболоида I (I, I = 0) абсолют соответствует их периферии.

При активных однородных преобразованиях Лоренца универсального базиса 1 = {I} исходная реперная точка CII на оси y, от которой в 1 отсчитываются углы II, перемещается по гиперболоиду II в любую другую его точку CII (в пределах одной его части). При этом её исходная тангенсная проекция O в модели Клейна перемещается из центра абсолюта в соответствующую точку OII внутри абсолюта.

От этой точки отсчитываются угловые расстояния (отрезки) внутри абсолюта мерой Ламберта II в новом псевдодекартовом базисе.

Аналогичным образом, при тех же преобразованиях 1 = {I}точка CI с направляющими косинусами ‹ cos 1,n ›, от которой в 1 отсчитываются углы I, перемещается по гиперболоиду I в любую другую его точку CI (причём CI CII ). При этом её исходная котангенсная проекция OI в модели Клейна перемещается из бесконечно удалённой n точки (на границе «E ») в соответствующую точку OI вне абсолюта. От этой точки отсчитываются угловые расстояния (отрезки) вне абсолюта мерой Ламберта I в новом псевдодекартовом базисе.

Следует отметить, что тензорные углы и, как и бесконечный прямой угол, – все в одном и том же гиперболически прямоугольном треугольнике согласованы тригонометрически между собой (§ 6.4).

В гиперболически прямоугольных треугольниках две стороны (катеты) гиперболически ортогональны (рис.4). Противолежащие этим катетам углы и по сути дополнительные друг к другу. То же относится к тензорным углам и. С учётом формул (356), (360) имеем:

th (±, ) sch (, ), th (± Г, ) sch (, Г);

cth (±, ) ch (, ), cth (± Г, ) ch (, Г);

sh (, ) · sh (, ) = 1, sh (Г, ) · sh (, Г) = I.

сh2 (Г, ) - sh2 (Г, ) = I = сth2 (, Г) - cosch2 (, Г);

th2 (Г, ) + sch2 (Г, ) = I = sсh2 (, Г) + th2 (, Г); где + <.

(Следствие: сумма гиперболических углов псевдоевклидова треугольника меньше двух прямых углов.) § 12.2. Ротации и деформации в пространстве Минковского Заметим, что тождественные тензорные функции приводятся в тригонометрическом базисе к разным каноническим формам (левые к обычным, правые к особым для первого случая и наоборот – для второго случая). В псевдоевклидовом пространстве Минковского, согласно (324), (326) и (363) – (365), имеем:

roth = F1 (, e ) = ch + sh F2 (, e ) = cth (± ) + cosch, (496) defh = F3 (, e ) = sch + i·th F4 (, e ) = th (± ) ± i·sch.

С использованием сферическо-гиперболической аналогии абстрактного типа (323) осуществляется формальный переход от моделей движения в гиперболической геометрии к моделям движения в сферической геометрии. Ранее такой же подход, но в обратную сторону применялся при выводе структур матриц гиперболических ротаций (363), (364) из уже доказанных структур матриц сферических ротаций (313), (314) с реперной осью.

Изоморфизм ротаций в объемлющем централизованном ‹квазиевклидовом, псевдоевклидовом› пространстве и геометрических движений на вложенной в него ‹сферической, псевдосферической› гиперповерхности связывает также изоморфно внешнюю ротационную тригонометрию объемлющего пространства и внутреннюю геометрию гиперповерхности с данным инвариантом. В частности, ротационные тригонометрии в квазиевклидовом пространстве с реперной осью и в пространстве Минковского размерности (n +1) изоморфны геометриям на n-мерной сфере и n-мерных гиперболоидах Минковского I и II (в сопутствующих n-мерных гиперболических неевклидовых пространствах) с учётом их инварианта – радиуса R.

§ 12.2. Ротации и деформации в псевдоевклидовом пространстве Минковского Далее на примере простейших псевдоевклидовых пространств n+Минковского ‹P ›, где n 3, покажем: как работает формула (474) для классификации псевдоевклидовых ротаций, или непрерывных однородных движений Лоренца. Конечно, данная формула применима для этого и в более сложных случаях.

При n = 1 возможна только элементарная гиперболическая ротация, автоматически согласованная с рефлектор-тензором. Эта ротация реализуется геометрически как движение по гиперболе.

При n = 2 возможны элементарная сферическая ротация (в пределах множества централизованных плоскостей в трёхмерной внешней полости изотропного конуса) и элементарная гиперболическая ротация 180 Глава 12. Тригонометрия псевдоевклидова пространства Минковского (в пределах множества централизованных псевдoплоскостей с осью y в трёхмерной внутренней полости изотропного конуса). Эти ротации реализуются как движения по сферическим и гиперболическим траекториям на двумерных гиперболоидах Минковского I и II.

При n = 3 возможны элементарная сферическая ротация (в пределах множества централизованных плоскостей в четырёхмерной внешней полости изотропного конуса) и элементарная гиперболическая ротация (в пределах множества централизованных псевдоплоскостей с осью y в четырёхмерной внутренней полости изотропного конуса). Эти ротации реализуются как движения по сферическим и гиперболическим траекториям на трёхмерных гиперболоидах Mинковского I и II.

Итак, при n 3 и q = 1 любые тригонометрические ротации Лоренца, согласно (474), сводятся к однократной элементарной ортосферической ротации rot и затем однократной элементарной гиперболической ротации roth Г, согласованным с рефлектор-тензором псевдоевклидова пространства Mинковского. Сферическая ротация элементарна, в силу того что n 3 в структуре (473). Гиперболическая ротация элементарна в любом пространстве Минковского.

Pages:     | 1 |   ...   | 20 | 21 || 23 | 24 |   ...   | 43 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.