WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 23 |

Первое условие состоит в том, что в любой момент автоматного времени на всех внешних выходных узлах схемы должны появляться какие-то элементарные сигналы. Считая, что в схеме не должно быть заведомо лишних узлов (то есть таких узлов, которые можно исключить из схемы, не нарушая ее функционирования), условимся, что в любой момент времени на каждый узел схемы (как внешний, так и внутренний) поступает какой-либо элементарный сигнал.

Второе условие корректности построения схемы заключается в том, что неоднозначность элементарных сигналов в каком-либо узле схемы хотя бы в один момент времени будет считаться недопустимой.

Существует два источника неоднозначности элементарного сигнала в узле. Вопервых, неоднозначность может иметь место в случае, если к какому-нибудь узлу подсоединено одновременно несколько выходных узлов, являющихся источниками элементарных сигналов.

На практике присоединение к одному и тому же узлу нескольких выходных узлов часто не приводит к возникновению неоднозначности. Это бывает только тогда, когда среди элементарных сигналов определена некоторая естественная упорядоченность, в силу которой одновременный приход нескольких элементарных сигналов эквивалентен приходу лишь наибольшего из всех фактически пришедших сигналов. В этом случае будет иметь место естественное разделение элементарных сигналов. Такое естественное разделение наблюдается, например, в случае релейно– контактных схем, а также во многих электронных схемах с импульсным представлением элементарных сигналов.

Во-вторых, источником неоднозначности элементарных сигналов в узле могут быть так называемые циклические цепи или петли структурных схем. Условимся называть цепью конечную упорядоченную последовательность автоматов B1,..., Bk, входящих в схему, у которых хотя бы один из выходных узлов каждого предыдущего автомата соединен с некоторым входным узлом следующего за ним автомата. Если к тому же хотя бы один из выходных узлов последнего автомата цепи соединен с каким-нибудь входным узлом первого автомата той же цепи, то цепь называется циклической. Обо всех узлах, входящих в цепи и петли, говорят как об узлах этой цепи или этой петли.

О цепи B1,..., Bk говорят, что она начинается любым из входных узлов автомата B1 и кончается любым из выходных узлов автомата Bk. Условимся также, что два отождествленных между собою узла а и b или один даже единственный узел составляют цепь (состоящую из пустого множества автоматов). В первом случае цепь начи нается любым из узлов а или b и кончается другим из этих узлов. Во втором случае цепь начинается и кончается узлом а. Циклические цепи, состоящие из пустого множества автоматов, называются тривиальными и в дальнейшем не рассматриваются.

Покажем на примере, каким образом может возникнуть неоднозначность в петле. Предположим, что каждый из трех автоматов Мили, входящих в цепь (рис. 4.2), обладает следующим свойством: структурный алфавит состоит из двух элементарных сигналов 0 и 1, и каждый автомат цепи переводит входной сигнал 0 в выходной сигнал 1, а входной сигнал 1 – в выходной сигнал 0; при этом входной и соответствующий ему выходной сигналы возникают в один и тот же момент времени.

1 оо 3 о Рис. 4.2. Некорректно построенная цепь Легко видеть, что при таком определении сигналов во всех входящих в цепь узлах будут возникать противоречия. Действительно, полагая, что если в какой-то момент времени в узле 1 сигнал 0, то в узле 2 в тот же самый момент времени будет сигнал 1, а в узле 3 – сигнал 0, следовательно, в узле 1 должен быть сигнал 1, хотя был сигнал 0, что и приводит к противоречию.

Петли, подобные только что рассмотренной, считают некорректно построенными. Некорректность такого рода не будет иметь места, если хотя бы один из входящих в петлю автоматов Мили заменить автоматом Мура. Действительно, автомат Мура реагирует на тот или иной входной сигнал выходным сигналом, возникающим на один элементарный промежуток времени позже, чем вызвавший его появление входной сигнал. Поэтому в данном примере сигнал 0, переданный в момент времени t в узел 1, вызвал бы в результате передачи его вдоль петли появление в этом узле сигнала 1 не в момент времени t, а в момент времени t + 1.

Рассмотрим, как построить схемы с соблюдением первого условия корректности.

Условие соблюдается автоматически, если в структурный алфавит включить естественный нулевой сигнал. В противном случае для соблюдения этого условия необходимо при проведении операции отождествления узлов выполнить определенные требования.

Прежде всего заметим, что все внешние входные узлы и все внутренние узлы, являющиеся выходными узлами автоматов Мура, по определению, получают элементарные сигналы во все моменты автоматного времени. Назовем все эти узлы задающими узлами. Сформулируем условие, обеспечивающее передачу элементарных сигналов от задающих узлов во все узлы автомата в каждый момент автоматного времени. Для этой цели учтем, что выходные сигналы у автоматов Мили, по определению, возникают одновременно с воздействием сигналов на все его входные узлы. Соответствующие условия можно сформулируем следующим образом:

1.1. Для любого узла схемы должна иметься цепь, состоящая из некоторого множества (может быть пустого) автоматов Мили, начинающаяся каким-либо задающим узлом и кончающаяся данным узлом. Назовем это условие первым условием правильности построения схемы.

1.2. Любой узел схемы должен быть отождествлен (соединен) не более чем с одним внешним входным или внутренним выходным узлом.

1.3. Любая правильная (содержащая не менее одного автомата) петля в схеме должна содержать в своем составе хотя бы один автомат Мура.

Схема, в которой выполнены все три условия: 1. 1, 1. 2, 1. 3, называется правильной схемой, а операция, состоящая в построении такой схемы – правильной композицией автоматов. Выполнение этих условий позволяет сформулировать условие 1.4.

1.4. Всякая правильная схема может рассматриваться как структурная схема некоторого автомата. Правильная композиция задает некоторый класс операций на множестве автоматов. Рассмотрим некоторые частные случаи таких операций более подробно.

Первый случай – операция пересоединения внешних узлов (композиция пустого множества автоматов).

В этом случае схема предполагается состоящей только из внешних (входных и выходных) узлов. Из условий 1. 1 и 1. 2 непосредственно следует, что каждый выходной узел в такой схеме должен быть соединен в точности с одним входным узлом.

Схема представляет собой автомат Мили без памяти (с одним состоянием). Компонентами структурного выходного сигнала автомата служат компоненты его структурного входного сигнала, взятые, вообще говоря, в другом порядке и, быть может, повторенные по несколько раз (рис. 4.3).

1 2 3 4 1 2 Рис. 4.3. Пересоединение внешних узлов Автомат, полученный в результате этой композиции, сопоставляет структурному входному сигналу х = (,, ) структурный выходной сигнал у = (,,,, ).

Второй случай – операция подстановки входов в автомате. Пусть имеется произвольный автомат А с m входными и n выходными узлами. Строится система, состоящая из автомата А и m внешних входных и из n выходных узлов, i-й выходной узел автомата А отождествляется с i-тым внешним выходным узлом (i = 1,..., n). Каждый входной узел автомата А отождествляется в точности с одним внешним входным узлом. Полученный в результате композиции автомат действует так же, как и исходный автомат А при условии, что на автомат А подается не исходный структурный входной сигнал х, а структурный входной сигнал, полученный из него в результате некоторой подстановки его компонент (рис. 4.4).

А Рис. 4.4. Постановка входов в автомате Третий случай – операция подстановки выходов. Определяется по аналогии с предыдущим случаем.

Четвертый случай – операция суперпозиции автоматов. Рассматриваются два автомата А и В, при этом у автомата А имеется m входных и n выходных узлов, а у автомата В – n входных и р выходных узлов. Суперпозиция этих автоматов заключается в построении системы, состоящей из автоматов А и В, m внешних входных и р внешних выходных узлов посредством соединения i-го внешнего входного узла с i-м входным узлом автомата А (i = 1,..., m), j-го выходного узла автомата А с j-м входным узлом автомата В (j = 1,..., n) и k-го выходного узла автомата В с k-м внешним выходным узлом (k = 1,..., p).

Пятый случай – операция объединения автоматов. Пусть имеется любое конечное множество автоматов А1,..., Ар. Каждый автомат Аi имеет mi входных и ni выходных узлов (i = 1,..., p). Строится система, состоящая из данных автоматов, у которых m1 + m2 +... + mp внешних входных узлов и n1 + n2 +... + np внешних выходных узлов. При этом каждый из внешних входных узлов соединяется в точности с одним из входных узлов автоматов А1,..., Ар. Точно такое же отождествление, по принципу взаимно однозначного соответствия, осуществляется между выходными узлами данных автоматов и внешними выходными узлами.

В дальнейшем будут рассматриваться в основном правильные схемы. Однако правильные схемы не всегда исчерпывают всех корректно построенных схем и это позволяет в ряде случаев пользоваться схемами, не принадлежащими к числу правильных. Отсюда следуют два важнейших случая.

Во-первых, очевидно, что в случае наличия в структурном алфавите естественного нулевого сигнала можно не соблюдать условие правильности 1.1 и, тем не менее, получать корректно построенные схемы. Условие 1.1 в таких схемах будет выполненным после введения так называемого нулевого автомата.

Нулевым автоматом называют автомат Мили с одним входным и одним выходным узлом, отличающийся тем, что на его выходном узле при любом сигнале на входном узле появляется нулевой сигнал.

При наличии в схеме узлов, для которых условие 1.1 не выполняется, можно, не изменяя условий работы схемы, вставить в нее добавочные цепи из нулевых автоматов, соединяющие задающие узлы со всеми такими узлами. После такой операции условие 1.1 будет выполнено.

Во-вторых, в случае, когда имеется естественное разделение элементарных сигналов, можно не соблюдать условие правильности 1.2 и, тем не менее, получать корректно построенные схемы. Однако в этом случае необходимо интерпретировать указанные схемы, чтобы выполнялось условие 1.2.

Этой цели можно достичь, введением понятия разделяющего автомата Мили, или просто разделения. В разделяющем автомате Мили на единственный выходной узел автомата передается всегда самый большой элементарный сигнал из числа входных сигналов, поданных в то же самое время на его входные узлы. Если в схеме с естественным разделением сигналов имеется соединение какого-нибудь узла с несколькими внешними входными или внутренними выходными узлами 1,..., k, то можно считать этот узел соединенным с выходным узлом разделяющего автомата, входные узлы которого соединены с узлами 1,..., k. При таком дополнении схемы ее работа не изменится, но условие 1.2 будет уже соблюдаться.

Прежде чем сформулировать условие 1.5 рассмотрим состояния автомата А, которые могут быть получены в результате композиции некоторых автоматов А1,...,Аk. Состояниями такого автомата А можно считать упорядоченные наборы (q1,..., qk) состояний всех автоматов А1,..., Аk. Полученный отдельный набор обозначается q и называется структурным состоянием автомата А. В дальнейшем будем предполагать, что в результате композиции автоматов, кроме указанных комбинаций уже имевшихся состояний, других состояний не возникает. Тогда справедливо следующее условие.

1.5. Число состояний автомата, полученных в результате композиций автоматов А1,..., Аn, равно произведению чисел состояний всех этих автоматов.

4.4. Канонический метод структурного синтеза автомата 4.4.1. Основная задача теории структурного синтеза автоматов Основной задачей теории структурного синтеза автоматов является нахождение общих приемов построения структурных схем автоматов на основе композиции автоматов, принадлежащих к заранее заданному конечному числу типов автоматов.

Более точно эта задача может быть сформулирована следующим образом.

2.1. Пусть задано некоторое конечное множество автоматов в одном и том же структурном алфавите Z. Назовем эти автоматы элементарными автоматами и предположим, что таких элементарных автоматов имеется неограниченное число экземпляров. Пусть также задан произвольный конечный автомат А в том же самом структурном алфавите Z. Необходимо найти алгоритм, позволяющий по заданному автомату А строить некоторую композицию элементарных автоматов так, чтобы полученный в результате композиции автомат индуцировал отображение, продолжающее отображение, индуцируемое автоматом А.

Следует отметить, что далеко не при всяком выборе системы элементарных автоматов эта задача имеет решение. Однако, если решение имеется (для произвольного конечного автомата А), то считают, что заданная система элементарных автоматов структурно полна или может иметь ослабленную структурную полноту.

Система элементарных автоматов ослабленно структурно полна, если для любого отображения, индуцируемого конечным автоматом, можно найти такую композицию элементарных автоматов, что получаемый в результате этой композиции автомат индуцирует отображение, которое продолжает либо само отображение, либо отображение, полученное из отображения в результате применения к нему операции выравнивания длин слов. При этом предполагается, что автомат, индуцирующий отображение, задан в том же структурном алфавите, что и все элементарные автоматы. Заметим также, что операция выравнивания длин слов, применяемая к отображению, являющемуся автоматным отображением, заключается в дописывании равного числа пустых букв справа к входным словам и слева к выходным словам отображения.

В настоящее время почти нет эффективных методов (существенно более простых, чем метод перебора всех вариантов) решения основной задачи структурного синтеза при любом выборе структурно полных систем элементарных автоматов. Наиболее часто применяют так называемый канонический метод структурного синтеза автоматов, пригодный для структурно полных систем элементарных автоматов некоторого специального вида.

Канонический метод структурного синтеза оперирует с элементарными автоматами, которые делят на два больших класса. Первый класс составляют элементарные автоматы с памятью (т. е. автоматы, имеющие более одного внутреннего состояния); такие автоматы называются элементами памяти или запоминающими элементами. Второй класс составляют автоматы без памяти (т. е. автоматы с одним внутренним состоянием), которые принято называть комбинационными, или логическими элементами.

Pages:     | 1 |   ...   | 10 | 11 || 13 | 14 |   ...   | 23 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.