WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 14 | 15 ||

Каждый элемент в наиболее общем случае может быть представлен как некий преобразователь входа в выход (для генераторных модулей сигнальный вход может отсутствовать). Его модель должна осуществлять это преобразование с заданной точностью. По своей сути компьютерная модель суть знаковая система (алгоритм, записанный на языке программирования), поэтому мы должны предварительно описать требуемые преобразования в максимально абстрактной знаковой форме в виде некоторой математической модели, а затем перевести ее в алгоритм. Таким образом, возможные способы исходного описания элементов модели разумнее всего не изобретать заново, а отыскать наиболее пригодные среди уже имеющихся известных математических моделей. Современная математика накопила большое количество математических объектов, свойства многих из них обстоятельно исследованы многими поколениями математиков. Поэтому нам нужно только уметь быстро ориентироваться в накопленном "багаже" математических моделей и грамотно их применять.

Выбор подходящих математических объектов для представления моделей определяется различными факторами, среди которых важнейшими являются тип базовых множеств и характер учета причинно-следственных связей в системе. Использование только этих факторов разбивает общее поле возможных моделей на четыре "специализированные зоны", в каждой из которых имеются наработанные виды математических объектов, некоторые из которых приведены в Табл. 4.1.

Табл. 4.1. Наиболее общая классификация математических методов представления динамических систем Тип множеств Характер причинно-следственных связей в для перемен- системе ных Детерминированные Стохастические Непрерывное Система дифференци- Системы массового альных уравнений обслуживания (СМО) (СДУ), динамическая система Дискретное Конечные автоматы Вероятностные автоматы Динамическая система В общем случае каждый элемент модели может рассматриваться как некий "черный ящик", осуществляющий преобразование входа в выход (Рис.

4.6). Для случая, когда и время и сама величина - непрерывны, а вход и выход являются непрерывными функциями вещественного аргумента, связь между ними может быть записана в операторной форме1:

y(t) = Q[x(t)].

y(t) x(t) Q Рис. 4.6. Внешнее представление динамической системы в виде "черного ящика" Говоря о модели, мы как бы приоткрываем «черный ящик», ассоциируя модель с оператором Q, связывающим вход и выход. Следует подчеркнуть, что когда мы имеем в виду самый общий случай, действие оператора Q мыслится как преобразование функции x(t) в y(t) и при этом обе эти функции расЗдесь для большей общности x(t) и y(t) могут мыслиться как векторно–значные функции времени.

сматриваются как неделимые объекты. Это означает, например, то, что значение выходной функции y(t) при некотором t = t0 может зависит от всех значений функции x(t) (при - t ), то есть более строго следовало бы записать y(t) = Q[{x().}, t].

В зависимости от дополнительных ограничений на вид и свойства оператора Q можно рассмотреть подмножества (классы) систем, для которых существует некоторое специальное представление этого оператора, позволяющее упростить его реализацию в модели.

Первое такое ограничение, которому очень часто удовлетворяет оператор Q – это причинность (каузальность). Если переменная t ассоциируется с физическим временем, то условие причинности равносильно условию физической реализуемости. Смысл условия причинности состоит в том, что реакция системы в некоторый момент времени t = t0 должна определяться только предыдущими значениями входа x(t)t t0 ). Реакция системы в настоящем может зависеть только от значения входа в прошлом и не зависит от его значений в будущем. Именно это свойство лежит в основе представления причинных систем через пространство состояний.

Для представления систем широко используется модель на основе переменных состояния, которые ассоциируются с наличием памяти внутри системы. Модель на основе внутренних состояний (Рис. 4.7) имеет в общем случае вид z(t) = F1[x()t0 t, z(t0)];

y(t) = F2[, x(t), z(t)], где F1[•,•] – функция состояния, F2[•,•] – функция выхода, z(t) – зависимость переменной состояния z от времени.

Могут быть другие эквивалентные (с точки зрения конечного результата) варианты, например, функция выходов F2[•,•] может зависеть только от переменной состояния и не зависеть от входа, то есть быть функцией только одного аргумента.

Q z(t) x(t) y(t) FFПамять x(t) z(t0) Рис. 4.7. Представление динамической системы в пространстве состояний Для стационарных систем правомочно еще одно допущение: реакция системы зависит не от абсолютного времени, а только от сдвига по времени относительно текущего момента времени. В этом смысле стационарность эквивалентна свойству инвариантности относительно сдвига времени.

Формально свойство инвариантности к сдвигу можно записать в следующем виде: если y(t) = Q[x(t)], то Q[x(t-t0)] = y(t-t0).

В случае, когда t, x, y, z принимают свои значения из конечных множеств, динамическая модель на основе переменных состояния соответствует модели конечного автомата. При использовании двоичного кодирования память конечного автомата – это набор бистабильных триггеров, а функции F1 и F2 – это комбинационные схемы.

Линейные динамические системы Особый класс динамических систем составляют линейные системы. Для всех линейных стационарных систем существует общий аналитический метод их описания и, следовательно, анализа, синтеза и реализации.

Система называется линейной, если для нее выполняется принцип линейной суперпозиции:

Q xi (t) = ai [xi (t)], a i Q i i где ai – скаляры (коэффициенты).

Математическое описание линейных систем основано на использовании свойств линейных векторных пространств. При этом функции времени трактуются как векторы (точки) бесконечномерного векторного пространства (гильбертова пространства). Приведем эскиз этого подхода.

Если множество входов { xi(t) } образует линейное векторное пространство1, то существует однозначное представление любой функции x(t) через базис:

x( t ) = i( t ), a i i где i(t) – элементы базиса; ai – коэффициенты разложения (проекции) по элементам базиса.

В этом случае реакция линейной системы может быть представлена следующим образом:

y( t ) = Q[x( t )]= Q i( t ) = Q[i( t )]= hi( t ), a a i i i a i i i где hi(t) = Q[i(t)]– реакция системы на i-ю базисную функцию i(t).

Отсюда видно, что реакция линейной системы на произвольное воздействие полностью и однозначно определяется набором реакций {hi(t)} системы на базисные функции {i(t)} и коэффициентами {ai} разложения входного воздействия по этому же базису.

В области непрерывных линейных инвариантных к сдвигу систем особую роль играет разложение по базису {(,t)}, где (,t) = (t-) (дельтафункция Дирака), R (R множество вещественных чисел). Имеет место представление через этот базис (в виде интегральной свертки):

x( t ) = a( ) (,t ) d = ) (t - ) d, a( - где a() = x(), поскольку разложение по базису {(t-)} совпадает с исходной функцией (фильтрующее свойство дельта-функции).

Согласно свойству линейности y( t ) = Q[x( t )]= Q ) (t - ) d = x( ) h( t - ) d, a( - где h(t) = Q[(t)] – импульсный отклик (импульсная характеристика) линейной системы.

Обозначив через * – операцию интегральной свертки, можно записать кратко:

Элементами (точками) этого пространства являются функции.

y(t) = x(t) h(t).

Благодаря ряду полезных свойств преобразования Фурье (линейность, теорема о свертке) имеется отображение этого соотношения в частотную область, что лежит в основе спектрального метода анализа линейных систем, суть которого иллюстрируется диаграммой:

y(t) = x(t) * h(t) Временная область Преобразование Фурье [ ] Y() = X() • H() Частотная область где H() – частотная характеристика линейной системы, H() = [h(t)]; Y() = [y(t)]; X() = [x(t)].

Вывод: Линейная стационарная (инвариантная к сдвигу) система полностью и вполне однозначно определяется импульсным откликом h(t) или соответствующей ему частотной характеристикой H() = A() exp(j()), где A() – амплитудно-частотная характеристика (АЧХ), j() – фазо-частотная характеристика (ФЧХ) линейной системы. Импульсная характеристика причинных систем обязательно равна нулю при t<0.

Пример: Рассмотрим простейшую дифференцирующую RC- цепочку (Рис. 4.8).

uC C R uвых uвх Рис. 4.8. RC-цепочка как пример простейшей линейной причинной динамической системы Ее модель, представленная через переменную состояния, имеет вид -(t -t0 ) t -(t - ) RC RC z(t)= F1(x( ), z(t0))= e z(t0)+ e x( )d, t0

z(t) = uC(t) – напряжение на емкости C;

y(t) = uвых(t) – напряжение на сопротивлении R.

h ( t ) t H( ) arg ( H( ) ) Рис. 4.9. Импульсная h(t) и частотная H() характеристики RC-цепочки Импульсным откликом RC-цепочки является функция t e- RC (t)-, при t 0;

RC h( t ) = 0, при t < 0, а ее частотная характеристика описывается функцией j() H()= [h( t )]= = A()* e, 1- j RC RC где A() = H() = – амплитудно-частотная характеристика;

1+ (RC)() = arg(H()) = arctg(RC) – фазо-частотная характеристика.

Импульсная и частотная характеристики RC-цепочки показаны на Рис. 4.9.

4.7. Метод статистических испытаний (раздел не готов) 4.8. Общая структура модели для анализа погрешности измерительной системы (раздел не готов) 4.9. Общие сведения о моделирующих программах VisSim, MathConnex, Genie (раздел не готов) ЛИТЕРАТУРА ОСНОВНАЯ 1. Самойлов Л.К., Николаев С.В. Автоматизированные системы научных исследований и комплексных испытаний: Учебное пособие. Таганрог, Изд-во ТРТИ, 1989, 81 с.

2. Николаев С.В. Системотехническое проектирование и программное обеспечение АСНИ: Текст лекций. Таганрог, ТРТИ, 1991, 32 с.

ДОПОЛНИТЕЛЬНАЯ 3. Николаев С.В. Системный анализ: Текст лекций. Таганрог, Изд-во ТРТУ, 2001, 106 с.

4. Дружинин В.В., Конторов В.С. Системотехника. М.: Радио и связь, 1985. 200 с.

5. Клир Дж. Системология. Автоматизация решения системных задач: Пер.

с англ. – М.: Радио и связь, 1990. 544 с. (Шифр НТБ ТРТУ 681.51/К495) 6. Чефранов Г.В., Логанов И.И., Донцов И.А. Некоторые вопросы философии: Учебное пособие для студентов. Таганрог, 1967. 248 с.

7. Мороз О. Свет озарений. М.: Знание, 1980. 208 с. (Жизнь замечательных идей).

8. Мальцев А.И. Алгебраические системы. М.: Наука, 1970. - 392 с.

9. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1972. - 496 с.

10. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.: Наука, 1986. - 544 с.

11. Манин Ю.И. Доказуемое и недоказуемое. (Кибернетика). М.: Сов. радио, 1979. - 168 с.

12. Борн М. Эйнштейновская теория относительности. М.: Мир, 1964. 452 с.

13. Gorelik G. Bogdanov's Tektologia, General Systems Theory, and Cybernetics.

Cybernetics and Systems: An International Journal, 1987, 18, p. 157 – 175.

(Есть в переводе на русский на каф. АСНИиЭ: Горелик Дж. "Тектология Богданова, общая теория систем и кибернетика").

14. Поваров Г.Н. Ампер и кибернетика. М.: Сов. радио. 1977. 96 с.

15. Винер Н. Кибернетика, или управление и связь в животном и машине.

М.: Наука, 1983. 340 с.

16. Эшби У. Введение в кибернетику. М.: ИЛ, 1959.

17. Николис Г., Пригожин И. Познание сложного. М.: Мир. 1990 (Шифр НТБ ТРТУ 539/Н637).

18. Пригожин И. Введение в термодинамику необратимых процессов. М.:

ИЛ. 1960.

19. Николис Г., Пригожин И. Самоорганизация в неравновесных системах.

М.: Мир. 1979.

20. Хакен Г. Синергетика. М.: Мир. 1980.

21. Краснощеков П.С. и др. Информатика и проектирование. М., Знание, 1986, 58 с. (Новое в жизни, науке и технике. Сер. "Математика, кибернетика"; 1986 г., №10).

22. Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие для вузов. М.: Высш. шк., 1989. 167 с. (Шифр НТБ ТРТУ 658.511.3(075)/ П27) 23. Орнатский П.П. Теоретические основы информационно-измерительной техники. Киев, Вища школа, 1976, 432 с.

24. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л., Энергоатомиздат, 1991, 304 с.

25. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М., Мир, 1971. – 400 с.

26. Виллемс Я. От временного ряда к линейной системе. В кн.: «Теория систем. Математические методы и моделирование. (Сб. статей)». Пер. с англ.

– М., Мир, 1989, стр. 8 – 191.

27. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984. 832 с.

28. Трауб Дж., Васильковский Г., Вожьняковский Х. Информация, неопределенность, сложность. М.: Мир, 1988. - 184 с.

29. Новицкий П.В., Зограф И.А Оценка погрешностей результатов измерений. Л., Энергоатомиздат, 1991, 304 с.

30. Самойлов Л.К., Палазиенко А.А., Сарычев В.В., Ткаченко Г.И. Дискретизация сигналов по времени (практика, алгоритмы): Монография. Таганрог, Изд-во ТРТУ, 2000. - 81 с.

31. Кисель В.А. Восстановление сигналов с ограниченным спектром по интегральным отсчетам. "Радиотехника", т.36, 1981, №3, стр. 73-76.

32. Темников Ф.Е. и др. Теоретические основы информационной техники.

М., Энергия, 1971. - 424 с.

33. Ефимов В.М. Квантование по времени при измерении и контроле. М., Энергия, 1969. - 88 с.

34. Котельников В.А. Теория потенциальной помехоустойчивости. М., Гостехиздат, 1958. - 151 с.

35. Цикин И.А. Дискретно-аналоговая обработка сигналов. М., Радио и связь, 1982. - 160 с.

36. Зюко А.Г. Элементы теории передачи информации. Киев, Технiка, 1969. - 300 с.

37. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. М., Мир, 1989. - 540 с.

38. Оппенгейм А.М., Шафер Р.В. Цифровая обработка сигналов. М., Связь, 1979. - 416 с.

39. Придэм Р.Г., Муччи Р.А. Цифровой интерполяционный метод формирования луча для низкочастотных и полосовых сигналов. ТИИЭР1, 1979, т. 67, № 6, с. 29-47.

40. Kohlenberg P.M. Exact interpolation of of band-limitted function. J. Appl.

Phys. vol. 24, 1953, pp. 1532-1436.

Pages:     | 1 |   ...   | 14 | 15 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.