WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 4 | 5 ||

0 1 2 3 4 5 6 \ 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 2 2 0 0 0 5 5 5 5 3 0 4 4 5 5 5 6 4 0 4 4 5 5 5 10 5 0 4 4 5 9 9 10 6 0 4 8 8 9 9 10 7 0 4 8 8 9 9 10 Максимальная стоимость набора изделий соответствует значению J1(7, 7), а сам набор – оптимальным значениям компонент управления (x1, x2, x3), на которых достигаются значения функций J1, J2 и J3: x1 = 1, x2 = 2, x3 = 0.

Упражнения 1. Дана модель Рамсея в дискретном времени с конечным горизонтом:

T -t ;

ln ct max 0ct st t =st+1 = (st – ct), s0 – задано, > 1; 0 < < 1.

а). Выписать для данной модели рекуррентное соотношение Беллмана, найти общий вид функций выигрыша Vk(s), k = 1, 2,…, и оптимальных стратегий потребления ck(s).

б). Определить решение уравнения Беллмана V(s) для этой задачи путем предельного перехода при T (если она есть). Показать, что стационарная стратегия потребления не зависит от, а оптимальная стационарная фазовая траектория имеет вид геометрической прогрессии. Найти неподвижную точку стационарного переходного отображения Y() как функцию параметров и.

2. В задаче:

n-1 n-i, s, p > 1, > 0, cip max c i ci i=0 i=получить рекуррентное соотношение Беллмана для функций Vn. Исходя из него получить рекуррентное соотношение для постоянных коэффициентов в выражении для Vn. Описать характер оптимальной стратегии потребления ci в зависимости от параметра.

Получить выражение для Vn непосредственно.

3. Рассматривается задача:

t max ;

U (ct ) 0ct xt t =xt+1 = f(xt – ct), x0 – задано, где U(c) a + c c 0, и f(z) b +z z 0, a,,, b,, – положительные параметры, < 1, < 1, функции f, U W.

Доказать, что существует решение уравнения Беллмана V() для этой задачи и имеет место неравенство:

V(x) x + K, K = const.

Определить значение K.

4. В задаче 3 положить:

0, c = U(c) =.

a + c, c > Построить функцию Беллмана V().

5. Дана скалярная динамическая система & x = ax + bu, t 0, с критерием качества J(u) = x + u2dt inf, где a, b 0, > 0, > 0 – заданные постоянные. Показать, что оптимальное управление u* имеет вид -a2 + bu* = – (a + )x, b а функция Беллмана V(t, x) – вид -a2 + bV(t, x) = x2 b– 2 (a + ).

6. Найти функцию Беллмана V() и оптимальное управление для динамической системы & x = u, 0 t 1, x(1) min; | u | 1.

7. Найти оптимальное решение задачи о ранце при M = 8, V = 6, N = 3:

Класс, i Стоимость, ci Масса, mi Объем, vi 1 3 3 2 2 2 3 1 1 Литература 1. Андреева Е.А., Бенке Х. Оптимизация управляемых систем. Тверь, Изд.

ТГУ, 1996.

2. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления. М.: "Высшая школа", 1998.

3. Беленький В.З. Оптимальное управление: принцип максимума и динамическое программирование. М.: РЭШ, 2001.

4. Брайсон А., Хо Ю-Ши Прикладная теория оптимального управления. М.:

Мир, 1972.

5. Бурштейн И.М. Динамическое программирование в планировании. М.:

Экономика, 1968.

6. Катулев А.Н., Северцев Н.А. Исследование операций: принципы принятия решений и обеспечение безопасности. М.: Физматлит, 2000.

7. Цлаф Л.Я. Вариационное исчисление и интегральные уравнения. М.:

Наука, 1966.

Pages:     | 1 |   ...   | 4 | 5 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.