WWW.DISSERS.RU


...
    !

Pages:     | 1 ||

i 0, < 1/() = [0, 1], = 1/ U(*, e ) = max U(i, e ) i = 1,..., n;

i i i i i 1, > 1/2.

,,,. 5.. ( )..

(1/2, 1/2).,.,.

, () (.

, 1 ,,.. a < c b < c. 1), () : (IBM, IBM), (Mac, Mac). - IBM PC.

. - 1- U1(, ) = [(a + c) + (1 )a] + (1 ) [0 + (1 )c] =,, = [2c (c a)] + (1 ) c,, 5.

5.

5.

5.

0, < (c a)/2c - () = [0, 1], = (c a)/2c , 1, > (c a)/2c.

2-.

(),,.

() 3. c a 2c, G = I, {Xi}iI, {ui}iI Xi, , ui() xi. G b + c ( ).

2c 6., 6., 6., 6., , , , , ,.

U2(, ) = [c + (1 )0] + (1 ) [b + (1 )(b + c)] = = [2c (b + c)] + b + (1 ) c, ( ).

0, < (b + c)/2c.

() = [0, 1], = (b + c)/2c 1, > (b + c)/2c.

, 1950-,.6., 15.

, x* X,. * x* Ri(xi) i = 1,..., n.

i b + c c a R() X X :

= =.

2c 2c R(x) = R1(x1)... Rn(xn).

, A, Ri(),.

.

R() X,, G = I, {Xi}iI, {ui0}iI.

Xi,, R():

, ui() xi x* R(x*).

..

, x*.

.

B,, Ri(), xi Xi..

( ).

. z, z Ri(xi).,.

u(z, x i) = u(z, x i). xi ui(), [0, 1] G = I, {Xi}I, {ui}I.

u(z + (1)z, x i) u(z, x i) + (1)u(z, x i) = {G[t]}t=0,1,2,..., = u(z, x i) = u(z, x i).

ui() z. z,., :

z + (1)z Ri(xi).

G[t] = I, {X[t]}I, {ui}I.

i G[0] = G.

Ri(). xn x i i i t+ xn x i i i, xn Ri(xn )., i Xj x Xi x i i t-. Xi.

i, x Ri(x i ). - i NDi (. ( u(xn, xn ) u(x, xn ) xi Xi, n. 6,. 11)).

i i i i NDi = {xiXi | yiXi : ui(yi, xi) > ui(xi, xi) xiXi}.

ui(),, u(x, x i i ) u(x, x i ) xi Xi.

i :

, X[t+1] = ND[t], i i, xi Ri(x i ).

ND[t] i G[t].

Ri(), 1 2 (. 15). -, 1 : t, x*,..

x* = (x*,..., x* ) 1 m X[t] = {x*}, iI, t = 1,..., t.

i i,, x*.

.

2:

,,, 1, x* , G, t, x* x* X[t], iI, t = 1, 2,...

i i.,., xi i, x* X[t], t = 1, 2,.... * * ui(x*, xi) < ui(xi, xi).

i, xi 1:

, x*., i, xX[], i i x* iI., i :

ui(x, xi) > ui(xi, xi) xiX[].

i i x* X[t], t = 1,...,.

* xi = xi:

* * ui(x, xi) > ui(xi, xi).

i i, x X[], G[] i i x x*, i i :

ui(x, xi) > ui(x*, xi) xiX[].

i i i.,,, x, x * * i i xi,, xi >,..

* (xiX[])., i ui(x, xi) > ui(x, xi) xiX[].

i i i * * ui(x, xi) > ui(x*, xi).

i i, x* * * ui(x, xi) > ui(x, xi).

i i.

, x i x*, i 2. :

.

, < < <... x, x, x,..., x*. i i i i, x*, x* = (x*,..., x* ) i 1 m t,.

x*.

i :

. , 1 . 1., , 1 .

(x, y). 1 (x1, y1), 2 (x2, y2). 1 8. : A, B x, 2 y., C..,..

., A. 2., :

, u1(A) = 2, u1(B) = 1, u1(C) = 0,.

u2(A) = 0, u2(B) = 2, u2(C) = 1, u3(A) = 1, u3(B) = 0, u3(C) = 2.

3.,.

9.,, N-.

,,,, : .

(L), (R) (E). 50, 30 20%.

.

,, 4. 2 (. 7),., 9.

., 5. . 4..

: xi = 1, 2 3. x1 + x2 4,, 10..

.

, . :

6. ) ux(x,y) = x2 + x (y + a) + y2, uy(x,y) = y2 + y (x + b) + x2,. (q ) (e1 e2 ) ux(x,y) = x2 2ax (y + 1) + y2, uy(x,y) = y2 + 2by (x + 1) + x2, ) ) ux(x,y) = x y/x + 1/2 y2, uy(x,y) = y x/y + 1/2 x2, q = 2(e1 + e2).

(a, b ).

ui = q ei 11. . 1, 3.

..,,..

7. xi [0, 1]. u1(c, z) = .. x1 < x2, (x1 + x2)/, 11., 1 (x1 + x2)/2.,,,, u2(.).

(x1 = x2), - 1),.

.

2) 12. 3).

, 4,, .

13. 1 (. 6) 0 1 2 3 4 5 6 7 8 :

0 ) a, b c 1 2 3 ), IBM 17.,, 2.

.

14., 18.., a > 0 (0),, b > 0, (1), 0, (2), c > 0. a, b c (3), : (0), (1) (4).

, (2).

15.,, 2, 1.,.

4 16. (i = 1, 2) 3 : a, 19. 1), b, c x, y, z. i-,..., : u1(a, x) = , u1(a, y) = , u1(a, z) = , min max ui(x, x i).

i xi Xi xi Xi u1(b, x) = , u1(b, y) = , u1(b, z) = , u1(c, x) = , u1(c, y) = , 2), i- ( ),,,, ( ),,,,, max min ui(x, x i).

i ( ). xi Xi xi Xi 1, 1., 0.

20. ., 24..

:

,. u1(x1, x2) + u2(x1, x2) = C.

. (, C = 0, . .), u1(x1,., x2),..

1, 2., (, u1(x1, x2), 1 1.

(x*, x*) X1X2, x1 X1 x2 X2 1 25., u1(x1, x*) u1(x*, x*) u1(x*, x2).) 2 1 2 2,,.,,..

.

21.,, 2. ( ), min max u1(x1, x2) = max min u1(x1, x2).

, x2 X2 x1 X1 x1 X1 x2 X,., 22. ,.,,,.,,,., ().

, ,.

,,, 23. - (, )..

( : , . ).

,,,.

, -. 7. (),, -, .,,, ., - .,,..

,, -. 1 100.

, 1,, 1. -, 8.

8.

8.

8.

.

.,, ,, - ,,,, -.

, 1 , ,, -. (). 8.

-, 1 1., :

7. 7.

7. 7.

-, .,.

100, 1, - 1.

1 (.. 9).

, -, (.. 7).20,, , . ..

9.

9.

9.

9.

. , -,., ..

.21 (, - ,,, -.),,,,.

, ( ) -..

, .22, -,.. -, ( -, ) : (.., ), ;.

,, , ; ,, -,, -.

(,, );

;

,,,, 2,, ; 2- 1-.

,,.

, . 8 (), ( [0,1]).

p y, p , y y.

.,,, ( p y.,, - ),. (1 ) p y y (1 ) p y y2.

,, 10..

10.

- 10.

, ., y 0..

,,.

,.

,. (. 8).

Kuhn, H. W. (1953), "Extensive Games and the Problem of Information," pp. 193-216 in Contributions to the Theory of Games, Volume II (Annals of Mathematics Studies, 28) (H.W. Kuhn and A. W. Tucker, eds.), : Princeton: Princeton University Press.,.

10. - (1 ) p y() =.

(, [0,, 1] ),.,24.., p y() max.

,, y. [0,1]. -, y(), (- p (1 ) max.

), [0,1] = 1/2,.

.,, p/4.. 11.

,.,,, : y.., :

, (1 ) p 2y = 0.

,, < 1, y > 0.,. 12,....

: (L1, R2) (L2, R1).

= 1 y = 0., 1- :

LR2- ) a) 1 1 LR2 L1 LR1 R 0 1 1 0 12. 12. 12. 12. y y p p p, 2 4,.

11. ().

11. ().

11. ().

11. ().

().

().

().

().

p y().

4.,,.

..

,, - () , - :,..,,, -, -, ;.,,.,,,,,.

,.

.

,.,,.

., ,.

,, IBM Mac.

, IBM, Mac IBM Mac 1 (. 6)., 1-. c a a + c 0 13.

b c 0 b + c. 1 13. 13. 13. 13.,. 2 4. :., 2-, : ( IBM, IBM), ( IBM, Mac), ( Mac,,, IBM), ( Mac, Mac). 12.

.

,,., (1), (2) (3).

,.

5.

IBM IBM Mac Mac ( IBM Mac IBM Mac ), c c bb IBM,.

a + c a + c a a 0 b + c 0 b + c Mac 0c0c. :

,,,., :, IBM, IBM Mac, ( ), Mac.

.,,,,.

(. 1).,, 2- 9., (s1,..., sm),., , i si si,.

,, si. (si, si),.

,.

.,,, a < c. - b < c.

i-, (si, si),,.

, (si, si).,, 2- IBM, c < b -, (,. ),, b i-, + c > 0. 1- si,, a + c (IBM) c (). IBM.

si,.,,, :

.

1- IBM, 2- ( IBM, Mac).

, 12,,.,.,.

3.,, Mac ( Mac, Mac), (. 13,. 26)..,.., : 2- 1-, , IBM; -. 1-. - :

, , .

., 2, IBM. -,,, 1-,,.

().,.

, IBM IBM, IBM), 10.

( G, G ,., ,,,, -.,,. -,. ., -. -.

: ,.

3, ,.,.

,,,,,.

.

,, 11.

..,,.

,.

.,.,.,.

, - (R. Selten (1965), "Spieltheoretische Behandlung eines Oligopol refinement ,. modells mit Nachfragetrgheit," Zeitschrift fr die gesamte Staatswissen schaft, 121, 301-24, 667-89).

/,.

, (. 26, . 26)., -. 1 -.,,,.

. 2 : IBM,, Mac. 13.

,. 13.,, 2- IBM.

,, IBM Mac, c b ,,, a + c a.

IBM. Mac ( Mac, Mac).,.

,,, 2-..

IBM ( IBM, IBM) , , .

, , IBM IBM, Mac) ( , .. y().....

,,,,.,,,,.

.. 6.

,,,,,,.,,,,.

.,,, ( 5),,,,.

,.

4 5 6, :.,.,.,,.

,.

1..

, 6,.,.

2.,,. ( 14), a, b, c, d > 0 .

. 3., y. y 2,,, ([0,1]).

(

Pages:     | 1 ||



2011 www.dissers.ru -

, .
, , , , 1-2 .