WWW.DISSERS.RU


...
    !

Pages:     || 2 |
TEMPUS (TACIS) JEP-N 08508/94 *Canterbury*Novosibirsk* *Oldenburg*Paris-8*..,..,..,..

, ,..

I 1999 ..,..,..,.., 1999 .......................................................................................... 4 .

................................................................................... 5,. -.......................................................................................... 5 TEMPUS-TACIS - 1............................ 5........................................................ 6,,..................................................... 8.

,................................................. 11.

............................................................... 12...................... 15, A....................................................................18. B....................................................................18................................................................................20 2............ 22.

................................................................................30, 3........ 31................................................................................35,, 4...................... 36.,................................................................................41, 5..

,............................................................ 42,,.,,................................................................................47 6. -.......................................................................

.............................................................................................................................................................,...,..

............................................................... 1. -................................................... 2.................................................... :,............................, 3............................................................................................................................................................................................................................................... 4..................................................................................................... 5............................................................................................................... 2...................................................................................................................................................................................................................................................................................................... 1....................................................................................................................................................... 3........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ 2.......................................................................................................................................

4......................................................................................................................................... (........................................................................ ).................................................................. :..................................................................................... :............................................................................................................................................................................................................................... 3- : ................................................................................... ( )............................................................................................................................................................................................... 5................................................................................................................................................................. 1...............................................................................................................................................................................................................................................................................................................................................................................................................................................,.

;, busygin@ieie.nsc.ru.

,.

,,,.,,,.

.,. .

,, ,.

.,.

.

.

. ,,,.

,, ),.

,,,,,., ( ),2, (, ( ),, ),., ..

.

,, .,,,,, -.,..,,, ,,,,..,,..

: (.,.

.

,. ), (. - ), (. ),, (. ).

.3, -.,.

.

1. ,,. ,, ,,,.,.,,,1, (,,,.

, .

, , 7 .

. IBM Mac, cb IBM,, a + ca , , 0b + c Mac,.

0c.

:

1.5 ,,,,. IBM PC, .

., a (a > 0), b (b > 0),.. . (c > 0),.8,,,,.

.

,,,..

(, m 1 2),, IBM Mac..

() 22. : (IBM, IBM), (IBM, Mac) (Mac, IBM) (Mac, Mac).. ;.

.6 , ,.

., ( ) - (Von Neumann, J. (1928), "Zur Theorie der. Gesellschaftsspiele," Mathematische Annalen, 100, 295-320....

Battle of sexes ,,. " ", .

...,.:, 1961, 173-204.. von Neumann, J., and O. Morgenstern (1944), Theory of Games and Economic . , , Behavior. Princeton. Princeton University Press....,., " ",.:

.,,, 1970.) ( ) - 1/2, I:

, 1/10,, I = {1,...,m}.

1/100.

i- ,, i- Xi. 1000..,9 200.. i-,,, xi. 100..

... x = (x1,..., xm), x 2, X1 Xm = X.

, -,.

( ( ). i- ui(). ).

, , .,, .10,, ., AB ( ) 102 A 110 .

120 B, 100 (A, A)., iI (1100), ui : X.

(300). (100),,, (100). :

1 G = I, {Xi}I, {ui}I.

(1100) + 100 (100) = 110 , 1. (300) + 100 (100) = 102 .

,, ..

,, 2.

,., : (A) ( (B). )...,., " - ( ",.:, 1970,., ")., "..:, 1978.

xi Xi i yi. 2.

Xi,,,, xiXi, ui(xi, xi) > ui(yi, xi),,.

Xi = Xj.

j i ,,, ,,, u (.

. 1). x1 u1(x1, x2),,.

y1.

1 (. 6),,, a = 2, b = 3, c = ( 3).

u1(y1, x2), 2xx2,, 1- IBM PC, x1,, y1.

1. x 1.

1.

1.

.

..

2 y1.

IBM Mac,.

IBM 2.

Mac xi Xi i ,, 3 > 0 2 > 1., 2-, xi Xi, i,, 3 > 1 4 > 0. yi Xi,..

:

ui(xi, xi) > ui(yi, xi) xiXi yi Xi: yi xi.

A, B,, A B.

.

.

, xi,. x, i-,..

xi = (x1,..., xi1, xi+1, xn).

.

, (xi, xi)., x.

1.

, -,, ().

,, 5.

. () x* X .

,.

3.

xi Xi i () yi Xi, (,, yi xi),,,,. xiXi,.

ui(xi, xi) ui(yi, xi), 3. , xi 3 : , Xi, .. ui(xi, xi) > ui(yi, xi).

. . u. u1(x1, x2), .,, 1, 1,, 0.

. u1(y1, x2) x1, x y1 (.. 2), 2. x 2.

2.

2.

x () (A) : () () () y1., y1.

.

..

1 1 1 1 4. 1 1 0 xi Xi i () ,,, xi Xi,, yi Xi,,.. (B) : ui(xi, xi) ui(yi, xi) xiXi yi Xi. 1 1 0 0 0 0, xi yi, xi yi.

, (. 4).... ,,,, (1 (, ), 1 (, ), 1 (, ), 0 (, ))., (pi = vi)..

,. n = 2. (, ).

(1 (, ), 0 (, ), 0 (, ), 0 (, )).

,, -,, 1-.

. 1-.. 1-, 2 ( - (p1 > p2), p2. ):

v1 p2. 1- (1, 1, 1, 0),, 2- (p1 < p2), (1, 0, 0, 0).

0. (p1 = p2), 1/2 1, v1 p2, (,, 1/2 0., ).

(v1 p2)/2.

, 1- :

. , v p2, p1 > p .

v1 p u1(p1, p2) = 2, p1 = p 0, p1 < p2.

,.

, , p1 = v1, , , , 4. . . 3 : p2 > v1, p2 = v1 p2 < v1.

[p2 > v1] 2-, vi,. (i = 1,..., n) 1- ;

pi.

(),,, 0.. 1- , , .

. i-, [p2 = v1] 2-, vi, vi p, vi 1- 0., , p , ;

,.

.

[p2 < v1] 2-, vi, 1-,. W. Vickrey (1961), "Counterspeculation, Auctions, and Competitive, Sealed Tenders", Journal of Finance, 16, 8-37., v1 p2.

1996.

, -. 1- . , , -,, . .

v1, 2- , 1- p1 = v1. :

2-,, () - .

.

p1 = v1, p2 = v2. 6.

yi Xi i, xi Xi,,..

ui(yi, xi) < ui(xi, xi) xiXi.

,,, (. ),,,,.,,,, ,,.

,.

1, a < c < b.,,, a = 1, c = 2, b = 3.

, 2- IBM, 1-,, IBM. 2-, 1-...

. 1-., 2-.

, ,,,.,,, -,.

,, , IBM Mac (,, ).

2 IBM 3 0 Mac 0. common knowledge 6.,, 3 - ( A B C. 33 ),, 3 0 I, ( 6) II 2 3. III, 4 6 II III 1 2,, (, 7 2 III .

).

0 1,. 23 (. 3 ) ),,. A C. C, (,,. 7.

,, ). 22 (. 3 ) ) I II. A B C A,, II (. 3 ) ),, 3 0 Z;., X 2 2 B, A B, B 4 6, Y.

. (. 3 ) ), Y 1 4, : (I, A). 7 2, 33 - Z 3 1, (I, A).

,.

, A B C A B ) ).

3 0 1 3 I I 2 3 2 2 4 6 4 II II 1 2 1,,,14, :

) ) A A B 3 I I 2,,. () 3.

3..

3.

( )..

(, ) (, ). - - ;

;,.

- ( -, ).,,, -, -., , ., ..

( ,, ).

.

, 7.

, x* X,15 :

:

1) x* i x* X, xe :

i x* i ui(x*, xe ) = max ui(x, xe ) i = 1,..., n;

i i i i * xi:

xi Xi 2) * * ui(x*, xi) = max ui(x, xi) i = 1,..., n.

i i :

xi Xi * xe = xi i = 1,..., n.

i, - ().

,,, - 8.

,..,. i-, Ri: Xi Xi,, xi Xi, i-,, xi., ( ).,.

ui(yi, x i) = max ui(x, x i) xi Xi, yi Ri(xi).

i xi Xi 1994... . : Nash, J. F.

: x* X (1950) "Equilibrium Points in N-Person Games," Proceedings of the Na, tional Academy of Sciences of the United States of America, 36, 48-49.

* x* Ri(xi) i = 1,..., n.

Nash, J. F. (1951) "Non-Cooperative Games," Annals of Mathematics, 54, i ( ), 286-295.

,., :

.

* x* = Ri(xi) i = 1,..., n. 1, i 7 - 2-., - 1 2 1 2 = 0.

. (B, Y),,..

-,. 2- :

1 1 2 2 = 0.

5. , :

, i., x,16 - * = * = 1/3.

1 1- x = 1 1 2.

, 2- :

1 1(2) =.

ui = ix max.

, 2- 1 2(1) =.

1(2), 1(*) = *, 2 2(*) = *.

1. 4., 1(2) 2(1),, 2(1).,, (ui(x) = const). 1.

3 4. 4. 4. 4. ,,., 1-,.

1(1 1 2),.

.

1. ; x* = (x*,..., x* ) -,,, 1 m,., 8.

-.

.

2. 1 1, x*, x* = (x*,..., x* ) i 1 m 1 .

0 B (. 18).,,,,.

.

,,, -,,.,,,,.,,,,.,...,, (.. 12. 27).

.

,,.

,,.

.,,.

.. 6. (). .

., ,,,. i Xi = {x1,..., xn}, i i,, ( ,), - 2) :

: e = * i = 1,..., n.

i i i i = (1,..., n).

i i i- -, i:

i,.., i = {i | k 0, k = 1,... ni; 1 +... + n = 1}.

i i i.

, ( ), 6.

,, ,., , i-,.

, (1,..., m), n1 nm i m i m U(i, i) = kk ui(xk,..., xk ).

1 m 1 m k1=1 km=U1(, ) = [(1) + (1 )1] + (1 ) [0 + (1 )0] =, = (1 2 ), ( ).

U2(, ) = [1 + (1 )(1)] + (1 ) [0 + (1 )0] = , = (2 1).

.,, ( < 1/2),.,,.. = 1.,,, .17,,.. = 0. = 1/2,,,,, [0, 1].,,. :

1, < 1/ 9.

() = [0, 1], = 1/ * = (*,..., * ) 1 m 0, > 1/2.

, :

, 1) * i :

e :

Pages:     || 2 |



2011 www.dissers.ru -

, .
, , , , 1-2 .