WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 18 |

Диаграмма — один из наглядных способов изображения зависимости между величинами. На диаграмме (чертеже) каждая величина изображается прямолинейным отрезком или какой-либо фигурой (прямоугольник, круг и т.п.), причём выбираются подходящие масштаб и единицы измерений.

Диаметр линии второго порядка — прямая (длина её), на которой лежат середины всех параллельных хорд данного (неасимптотического) направления. Как пример: для эллипса — прямые, проходящие через его центр; для параболы — ось параболы и все параллельные ей прямые; для гиперболы — прямые, проходящие через центр (кроме асимптот).

Диаметр окружности (шара) — хорда, проходящая через её (его) центр; длина равна удвоенному радиусу.

Дизъюнкция — см. Символика математической логики.

Дивергенция — расходимость (расхождение) векторного поля r r r r a = axi + ay j + az k — скалярная величина, равная r ax ay az dia = + +. См. Оператор Гамильтона.

x y z Директриса кривой 2-го порядка — прямая, обладающая тем свойством, что отношение расстояния от любой точки кривой до фокуса к расстоянию от той же точки до рассматриваемой прямой есть величина постоянная, равная эксцентриситету. Эллипс и гипербола имеют по две директрисы, парабола — одну, для окружности директриса не определена.

Дискретная математика — область математики, занимающаяся изучением свойств дискретных (прерывистых) структур.

Дискретная случайная величина — случайная величина, множество значений которой конечно (счётно).

Дискретное множество — множество, все точки которого — изолированные точки, т.е. это множество без предельных точек.

Дискретность — прерывистость, в противопоставление непрерывности; так, система целых чисел, в противоположность системе действительных чисел, является дискретной.

Дикриминант —в целом различающее выражение, составленное из величин (коэффициентов, производных и т.д.), определяющих данную зависимость. Обращение дискриминанта в 0 характеризует то или иное отклонение зависимости от нормы - так, дискриминант многочлена равен нулю, если многочлен имеет равные корни.

( ) Дискриминант многочлена Pn x = a0xn + a1xn-1+...+an — 2n-— выражение a0 i -, в котором i, — корни ( ) j j 1 jin ( ) уравнения Pn x = 0. Он может быть выражен через коэффициенты (например, дискриминант трёхчлена ax2 + bx + c равен b2 - 4ac).

Дисперсионный анализ — статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования экспериментов.

Дисперсия случайной величины X — мера её рассеяния, отклонения от математического ожидания MX, определяемая равенством 2 ( ) DX = M X - MX или DX = M(X ) - ( ) MX. Для дискретn ной случайной величины DX = xi - MX pi, где xi — значе() i=ния X, pi — соответствующие им вероятности. Для непрерывной слу чайной величины DX = X - MX f x dx, где f(x) — плотность () ( ) вероятности.

Дисперсия статистического распределения (в частности, генеральной совокупности, выборки) вычисляется по формуле n n xi ( - x ni xi 2ni ) i=1 i=DX = x, где xi — варианили DX =- ( )n n ni n i i=1 i=ты, ni — соответствующие им частоты, x — статистическое среднее случайной величины X.

Дистрибутивность операции умножения относительно опера( ) ции сложения выражается тождествами a b + c = a b + a c, n ( ) ( ) b + c a = b a + c a. Другой пример: равенство ab = anbn показывает, что оператор возведения в степень дистрибутивен относительно операции умножения (но не относительно операции сложения, n ( ) так как в целом a + b an + bn ).

Дифференциал функции y= f(x) — главная линейная часть ( ) ( ) приращения функции: dy = f x dx, где f x — производная функции, dx = x — дифференциал (приращение) аргумента.

Дифференциал функции нескольких переменных f x1, x2,..., xn записывается в виде ( ) f f f f df = dx1 + dx2 +...+ dxn, где частные производ x1 x2 xn xi ные.

Дифференциальная геометрия — раздел математики, в котором геометрические образы изучаются методами математического анализа, в первую очередь — дифференциального исчисления.

Дифференциальная функция, плотность вероятности — функция распределения непрерывной случайной величины, определяе мая формулой f (x) = F (x), где F(x) - интегральная функция распределения случайной величины. Основные свойства плотности веро ятности: f (x), f (x)dx = 1.

Дифференциальное исчисление — раздел математики, в котором изучаются производные и дифференциалы функций, исследуются функции и решаются прикладные задачи (например, задачи на экстремум).

Дифференциальное уравнение (обыкновенное) — уравнение, содержащее искомую функцию одного переменного, её производные различных порядков и независимую переменную. Порядок уравнения определяется старшим порядком производной функции, входящей в это уравнение.

Дифференцирование — операции нахождения производных (частных производных) функций и их дифференциалов.

Дифференцируемая функция — функция одного или нескольких переменных называется дифференцируемой в некоторой точке, если в данной точке существует дифференциал этой функции. Для дифференцируемости функции необходимо и достаточно существование конечной производной для функции одной переменной или чтобы существовали в этой точке непрерывные частные производные для функции нескольких переменных.

Длина вектора, модуль вектора.

Длина дуги, кривой — числовая характеристика протяженности линии. Любая непрерывная кривая на плоскости имеет длину, конечную или бесконечную. Если длина конечна, то кривая (линия) называется спрямляемой. При задании кривой уравнением y=f(x) длина её b l = 1+ f (x) dx, при параметрическом задании [ ] a t( ) ( ) l = [x t ] + y t dt.

[ ] tДлина ломаной — суммарная длина отрезков, являющихся звеньями ломаной.

Доверительный интервал — статистическая оценка параметра вероятностного распределения, — интервал, который с высо, кой вероятностью (высоким коэффициентом доверия или коэффициентом надёжности p) накрывает неизвестные значения параметра :

< < = p.

( ) Додекаэдр — правильный многогранник; имеет 12 пятиугольных граней, 30 рёбер, 20 вершин, в каждой из которых сходятся 3 ребра.

Доказательство — рассуждение с целью обоснования истинности какого-либо утверждения (теоремы).

Дополнительный угол к углу — угол = 90° -, т.е. в сумме с дающий угол в 90°.

Достаточные условия — см. Необходимые и достаточные условия.

Достоверное событие — событие, которое в результате опыта (наблюдения) непременно должно произойти; вероятность достоверного события равна единице.

Дробная часть числа — см. Целая и дробная части числа.

ax + b Дробно-линейная функция — функция вида y = при cx + d ad - bc 0.

m Дробь арифметическая — число, изображаемое символом n или m/n, где m — числитель, n — знаменатель. Если m < n, дробь называется правильной; при m > n — неправильной. Неправильная дробь может быть представлена в виде смешанного числа (в виде суммы целого числа и правильной дроби).

f (a,b,..., x), где f и — мноДробь алгебраическая — дробь (a,b,..., x) гочлены.

Дуга — часть непрерывной кривой, заключённая между двумя её точками и не содержащая кратных точек.

Е e число — иррациональное и трансцендентное число как предел ограниченной последовательности n e = lim1+ = 2,718281828459045..., служит основаниn n ем натуральных логарифмов.

Евклидова геометрия — геометрическая теория, основанная на системе аксиом и впервые изложенная Евклидом в 3 в. до н.э. Современная система аксиом состоит из 5 групп и опирается на 6 понятий:

объекты "точка", "прямая", "плоскость" и три вида отношений между ними, выражаемые словами "принадлежит", "между", "движение".

Евклидово пространство — в узком смысле пространство, свойства которого описываются аксиомами евклидовой геометрии. В более общем смысле — векторное пространство над полем действительных чисел, в котором каждой паре векторов ставится в соответствие действительное число, называемое скалярным произведением этих векторов.

Через это произведение определяются длины векторов и угол между ними, а также вводится понятие ортогональности.

Единичная матрица — диагональная матрица, каждый элемент главной диагонали которой равен единице.

Единичный вектор, орт.

Единичный отрезок — масштабный отрезок, условно принимаемый за единицу на координатной оси.

З Зависимая переменная, функция.

Задача Коши — дифференциальное уравнение вместе с начальными условиями; задача состоит в отыскании решения (интеграла), удовлетворяющего начальным условиям.

Закон больших чисел — общий принцип, в силу которого совместное действие случайных факторов приводит при некоторых весьма общих условиях к результату, почти не зависящему от случая.

Закон Гаусса — часто употребляемое название нормального распределения случайной величины.

Замечательные пределы — такое название получили следующие 5 пределов:

sin x 1) lim = 1 — замечательный тригонометрический xx (первый замечательный) предел;

x 2) lim1+ = e — замечательный показательно-степенной x x (второй замечательный) предел;

( ) ln 1+ x 3) lim = 1 — замечательный логарифмический xx предел;

ax -4) lim = lna — замечательный показательный предел;

xx (1+ x) - 5) lim = — замечательный степенной предел.

xx Замкнутый промежуток — см. Числовые промежутки.

Зеркальное отражение — симметрия относительно прямой на плоскости или относительно плоскости в пространстве.

Знакопеременный ряд — ряд, среди членов которого есть ai i=как положительные, так и отрицательные.

k Знакочередующийся ряд — ряд ± 1) ak, члены которого (k=строго попеременно положительны и отрицательны ak > 0.

( ) Знаменатель геометрической прогрессии — см. Геометрическая прогрессия.

Знаменатель дроби — см. Дробь.

И Извлечение корня — алгебраическое действие, обратное возведению в степень. Извлечь корень n-й степени из числа a — это значит найти такое число x, которое при возведении в степень n даёт данное n число (x = a, xn = a).

Изоклина дифференциального уравнения первого порядка — кривая на плоскости, в каждой точке которой правая часть уравнения y = f (x, y) принимает постоянное (произвольное, но фиксированное) значение.

Изолированная точка — особая точка, — такая, что она удовлетворяет некоторому уравнению, но не лежит на (непрерывной) кривой, описываемой этим уравнением. Например, точка (0;0) является изолированной точкой кривой y2 = x4 - 4x2.

Икосаэдр — правильный многогранник; имеет 20 треугольных граней, 30 рёбер, 12 вершин, в каждой из которых сходятся 5 рёбер.

Импликация — логическая операция, заключающаяся в соединении данных высказываний A и B в новое высказывание "если А, то В"; обозначается: A B, A B, A B. Высказывание A называется посылкой высказывания A B, а B — его заключением.

Инвариант — некоторое выражение, остающееся неизменным при определённом преобразовании переменных, связанных с этим выражением (например, при переходе от одной системы координат к другой).

Инвариантность формы дифференциала функции f(x) состоит в том, что формула записи дифференциала в виде df = fxdx имеет место как для независимой переменной x, так и для случая, когда x ( ) является функцией: x = x t dx = xtdt, df = fxxtdt, fxxt = ft, df = ft. Инвариантность распространяется и на полный дифференdt циал функции нескольких переменных.

Индекс — числовой или буквенный указатель, которым снабжаются математические выражения для того, чтобы отличить их друг от друга; например, x0, xi, a3, amn (здесь 0, i, 3, mn суть индексы).

Индукция — форма мышления, посредством которой мысль наводится на какое-либо общее утверждение или положение, присущее всем единичным предметам определённой совокупности. Индукция часто используется в сочетании с дедукцией.

Интеграл — понятие, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой — измерять площади, объемы, длины дуг, работу силы за определённый промежуток времени и т.п. Соответственно с этим различают неопределённые интегралы f x dx и ( ) b ( ) определённые интегралы f x dx.

a Интеграл вероятности, интеграл ошибок — функция x terf x = ( ) e dt, x <.

Интеграл вероятности Гаусса — функция нормального распределения x t 1 1 x x = e dt = erf ( ) 1+ 2.

Интеграл дифференциального уравнения F x, y, y,..., y( n) = 0 :

( ) 1) соотношение вида Ф(x,y)=0 (или сама функция Ф(x,y)) называется частным решением y(x) этого уравнения или его частным интегралом;

2) соотношение x, y,c1,c2,...,cn = 0 с n произвольными ( ) постоянными — общим интегралом;

3) соотношение x, y, y,..., y(k ),c1,c2,...,cn-k = 0, содер( ) жащее производные до k-го порядка, 1 k n, и n - k произвольных постоянных, называется промежуточным интегралом, в частности при k=1 первым интегралом.

Интеграл Римана, определенный интеграл.

Интеграл с переменным верхним пределом — функция переx ( ) ( ) менного x x = f t dt. Если f непрерывна на отрезке [a,x], то a ( ) ( ) x = f x, т.е. функция Ф является первообразной для функции f.

Интегральная кривая — график решения дифференциального уравнения или системы дифференциальных уравнений.

n Интегральная сумма — сумма вида f i xi, построенная ( ) i=для непрерывной на некотором отрезке [a,b] функции y=f(x) при произвольном разбиении отрезка на n частей max xi 0 и про() извольном выборе точек xi-1 i xi. Предел интегральных сумм представляет собой интеграл, а сами интегральные суммы дают приближенное значение интеграла.

Интегральная функция распределения случайной величины X — функция F x, определяющая для каждого значения x вероят( ) ность того, что случайная величина X примет значение, меньшее x, т.е.

( ) ( ) ( ) F x = P X < x, 0 F x 1.

Интегральное исчисление — раздел математики, в котором исследуют функции на основании связи между первообразной искомой функции и интегралом от неё, изучаются интегралы различного вида, их свойства, способы вычисления, а также приложения этих интегралов к различным задачам естествознания и человеческой деятельности.

Интегральное уравнение — уравнение, содержащее искомую функцию под знаком интеграла.

Интегрирование — вычисление определённых и неопределённых интегралов, а также иных видов интегралов — кратных, криволинейных и т.п.

Интегрирование дифференциальных уравнений — решение этих уравнений.

Интервал — см. Числовые промежутки.

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 18 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.