WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 54 |

Загадки канторовской шкалы породили целый ряд нерешенных (и в значительной степени неразрешимых) проблем и стали в XX веке основой для множества дискуссий, посвященных и основаниям математики, и эпистемологии. Споры и перебранки о законности канторовских умственных построений привели к тому, что главное достижение его жизни стало и причиной нескольких нервных срывов и депрессий, которые в конце концов свели его в могилу в то самое время, когда Первая мировая война перемалывала последние остатки просвещенческой веры в разум.

Пространство и время. Измерения длины в человеческих масштабах с неизбежностью должны были быть связаны с земельными участками и мотивированы нуждами сельского хозяйства и строительства.

С помощью палки с двумя зарубками или веревочки меру длины можно было переносить с одного места на другое.

Основная евклидовская абстракция –– бесконечно жесткая и бесконечно делимая плоскость, с ее скрытой группой симметрий из поворотов и переносов, с ее точками, не имеющими размера, прямыми, беспрепятственно продолжающимися в обе стороны, и идеальными треугольниками и окружностями –– была, видимо, рафинированным абстрактным образом древней геодезии. Возможно, евклидовская трехмерная геометрия была ближе к наблюдаемому миру; замечательно, что Евклид систематически создавал и изучал также двух-, одно- и нульмерные абстрактные объекты.

Теорема Пифагора была красиво связана с арифметикой в практике египетских строителей: формулу 32 + 42 = 52 можно перевести 38 Ч I. М Измерение расстояний с помощью Wagen-Wegmesser (прототип современного таксометра) из книги: Pfinzig «Methodus geometrica», Nrnberg, в рецепт построения прямого угла с помощью веревки с расположенными на равных расстояниях узлами.

Когда Эратосфен Александрийский (ок. 200 до н. э.) разработал свой метод для первого научного измерения длины в действительно больших масштабах (а именно, размеров Земли), он с большим искусством воспользовался всеми возможностями евклидовой геометрии. Эратосфен заметил, что в полдень в Сиене в день летнего солнцестояния Солнце находилось точно в зените, поскольку его свет достигал дна глубокого колодца. В то же самое время в Александрии расстояние от Солнца до зенита составляло одну пятидесятую часть полной окружности. Кроме этого, использовались еще два результата наблюдений: во-первых, расстояние от Сиены до Александрии, которое было принято равным 5000 греческих стадий (это тоже измерение в большом масштабе; возможно, оно основывалось на времени, необходимом, чтобы преодолеть это расстояние), и во-вторых, утверждение, что Сиена и Александрия лежат на одном меридиане.

Оставшаяся часть эратосфеновского измерения основана на теоретической модели. Земля предполагается круглой, а расстояние от Солнца до ее центра предполагается настолько большим, что солнечные лучи, падающие на Сиену и Александрию, можно считать параллельными.

М Теперь простое рассуждение из евклидовской планиметрии, примененное к сечению Земли, проходящему через Сиену, Александрию и Солнце, показывает, что расстояние между Сиеной и Александрией составляет одну пятидесятую от окружности Земли; тем самым эта окружность составляет 250 000 стадий (современные оценки величины греческой стадии показывают, что это довольно хорошее приближение).

В этом рассуждении неявно подразумевается существование расширенной группы симметрий евклидовой плоскости, включающей, наряду с переносами и поворотами, еще и изменения масштаба, при которых все расстояния одновременно изменяются в одной пропорции. Практическое воплощение этой идеи –– карта –– было критически важно для огромного количества видов человеческой деятельности, включая географические открытия по всему земному шару.

Внимательный читатель, видимо, уже заметил, что в этом описании (основанном на книге Клеомеда «De motu circulari corporum caelestium», датируемой серединой I века до н. э.) неявно участвует и измерение времени. В самом деле, откуда мы знаем, что мы смотрим на Солнце в одно и то же время в Александрии и в Сиене, отстоящей от Александрии на 5000 стадий Самые ранние измерения времени в человеческом масштабе связаны с циклической сменой дня и ночи и нахождением приблизительного положения Солнца в небе. Солнечные часы, о которых упоминают Клеомед и Эратосфен, преобразуют измерение времени в измерение расстояний.

Следующее по масштабу измерение времени связано со сменой времен года и периодичностью религиозных праздников. Чтобы при этом достичь необходимой точности, нужна математическая наблюдательная астрономия. Первоначально она используется для регистрации нерегулярностей годового цикла, то есть, в основном, движения Земли в Солнечной системе. Используемая при этом математика включает вычисления, основанные на интерполяционных методах.

Следующее увеличение масштаба –– это хронология «исторического времени». Математика сыграла фундаментальную роль при оформлении физической шкалы исторического времени, размеченной приближенной периодичностью вращения Земли вокруг Солнца и другими астрономическими событиями. Однако, в размещении исторических событий на этой шкале математические методы оказались весьма ограниченно применимыми.

Геологическое и эволюционное время возвращают нас к науке:

эволюция геологических структур и жизни прослеживается на ос40 Ч I. М нове развитого понимания физического времени, и это понимание существенно опирается на математику; с другой стороны, изменения, о которых идет речь, происходят настолько постепенно, а свидетельства настолько редки, что точность измерений становится и несущественной, и недостижимой. Кроме массы данных наблюдений, блестящих догадок и сопровождающих все это очень элементарных рассуждений, для датировки требуется еще совсем чуть-чуть математики, а именно, идея, что при радиоактивном распаде остаток распадающегося вещества экспоненциально убывает со временем. Весьма оригинальная версия этой идеи была использована в глоттохронологии –– процедуре, позволяющей датировать древние состояния языков (праязыки), реконструированные методами сравнительной лингвистики.

Уже сам по себе размер шкалы геологического и эволюционного времени оказался, когда она была установлена и научно разработана, вызовом догматам (христианской) веры: несоответствие с предполагаемым временем, прошедшим от сотворения мира, было чудовищным.

Измерения времени в малых масштабах стали возможны с изобретением часов. Солнечные часы, использующие относительную регулярность видимого движения Солнца, позволяют подразделить сутки на более мелкие части. Водяные и песочные часы отмеряют фиксированные отрезки времени; при этом используется идея о воспроизводимости некоторых физических процессах в специально созданных условиях. Механические часы добавляют к этому искусственное создание периодических процессов. Современные атомные часы основаны на тонком использовании периодических процессов на микроуровне.

И все же время остается загадкой: мы не можем в нем свободно перемещаться, как в пространстве, и оно тянет нас неизвестно куда.

Вот как бл.Августин напоминает нам об этой вечной ненаучной м уке:

«Что я измеряю время, это я знаю, но я не могу измерить будущего, ибо его еще нет; не могу измерить настоящего, потому что в нем нет длительности, не могу измерить прошлого, потому что его уже нет.

Что же я измеряю» («Исповедь», книга XI, XXVI.33; перевод М. Е. Сергеенко).

Случай, вероятность, финансы. Коннотации слов «случайность» и «вероятность» в обыденном языке имеют мало общего с вероятностью в математическом смысле. В [6] приведен интересный анализ семантики соответствующих слов в нескольких древних и современных европейских языках: в основном эти слова связаны с идеей человеческого доверия (или недоверия) в неясных ситуациях. Измерения вероятности и математическая обработка результатов этих измереМ ний относятся не к доверию как таковому, являющемуся психологическим феноменом, но к объективным численным характеристикам реальности, первоначально тесно связанным с подсчетом.

Если колода из 52 карт хорошо перетасована, то вероятность вытянуть пиковую даму равна 1/52. Элементарная, но интересная математика возникает при расчетах вероятностей различных комбинаций («хороших раскладов»). В этих расчетах неявно присутствует идея группы симметрий: мы не просто считаем количество карт в колоде или количество хороших раскладов по сравнению со всеми возможными –– мы предполагаем, что при честной игре все эти карты и все эти расклады равновероятны.

Одним из источников теории вероятностей был математический анализ азартных игр, а другим –– статистика банковской деятельности, торговли, налогообложения и пр. Наблюдения над частотами различных событий и их повторяемостью привели к понятию эмпирической вероятности и к более или менее явно формулируемой идее о «скрытой игре в кости» –– ненаблюдаемом царстве причин, производящих наблюдаемые частоты с регулярностью, достаточной для того, чтобы они вписывались в математическую теорию. Современное определение вероятностного пространства –– аксиоматизация этого представления.

Деньги начинались как мера стоимости; их критически важный переход в вероятностный мир произошел вместе с выделением кредита как основной функции банков.

Этимология слова «кредит» также связана с идеей человеческого доверия. Мэри Пуви в своем тонком анализе зарождающейся «культуры финансов» (см. [29]) отмечает, что эта культура резко отличается от экономики материального производства, которая «создает прибыль, превращая рабочую силу в продукты, которым присваиваются цены и которые после этого обмениваются на рынке». Финансы же создают прибыль, в частности, «с помощью заключения сложных пари на рост или падение цен в будущем» [29, с. 27], то есть и с помощью азартной игры. Масштабы этой игры поражают воображение, а невероятная смесь реального и виртуального миров, возникающая в культуре финансов, является взрывоопасной и периодически приводит к финансовым кризисам.

Информация и сложность. Это пример недавней и весьма сложной парадигмы измерения.

Подобно «случайности» и «вероятности», термин «количество информации», ставший одним из важных математических понятий во второй половине XX века после работ Клода Шеннона и А. Н. Колмо42 Ч I. М горова, вызывает не совсем верные ассоциации: грубо говоря, количество информации измеряется всего лишь длиной текста, необходимого для того, чтобы эту информацию записать.

На первый взгляд кажется, что эта мера, во-первых, измеряет не то, что нужно, а во-вторых, дезориентирует. Нам нужно знать, является ли информация важной и надежной, и это –– качественные, а не количественные характеристики. Более того, важность информации зависит от культурного, научного и политического контекста. И уж в любом случае кажется неестественным измерять объем информации, содержащейся в «Войне и мире», просто толщиной книги.

Тем не менее, «количество информации» становится центральным понятием в ситуациях, когда мы оперируем с информацией, не интересуясь ее содержанием или надежностью (но обращая внимание на информационную безопасность), что является основным делом средств массовой информации и телекоммуникационной индустрии.

Общий объем текстов, передаваемых ежедневно по Интернету, в СМИ и по телефону, поражает воображение и далеко превосходит пределы того, что мы назвали «человеческим масштабом».

Основные идеи Шеннона, относящиеся к измерению количества информации, можно кратко изложить следующим образом. Пусть для начала информация, которую вы хотите передать, –– это всего лишь ответ «да» или «нет» на вопрос вашего собеседника. Чтобы передать эту информацию, не нужно даже пользоваться словами естественных языков: достаточно передать 1 вместо «да» или 0 в значении «нет».

Это –– один бит информации. Пусть теперь вы хотите передать чтото более сложное, для чего вам нужен текст, состоящий из N битов.

Тогда количество передаваемой вами информации ограничено сверху N битами, но уверены ли вы, что для тех же целей нельзя обойтись более коротким текстом На самом деле существуют систематические способы сжатия данных; Шеннон описал их в явном виде. Наиболее универсальный из этих методов основывается на предположении, что не все тексты из тех, что вы в принципе могли бы передавать, встречаются с одинаковой вероятностью. В этом случае надо сменить кодировку таким образом, чтобы коды более вероятных текстов стали короче, а менее вероятных –– длиннее, и за счет этого сэкономить на объеме передаваемых данных, по крайней мере в среднем. Вот как можно сделать это при кодировании текстов на естественном языке. Поскольку в алфавите около 30 букв, а 25 = 32, для кодирования каждой из буквы нужно 5 битов, так что получается текст, у которого длина в битах в 5 раз больше, чем длина в буквах. Однако же некоторые буквы встречаются гораздо чаще других, так что можно М попробовать закодировать часто встречающиеся буквы более короткими последовательностями битов. Это –– оптимизационная задача, которую можно решить в явном виде, а длину получающегося сжатого текста можно подсчитать. По существу это энтропия в смысле определений Шеннона и Колмогорова.

Пользуясь статистической парадигмой измерения, создатели Google нашли впечатляющее решение задачи измерения важности информации. Грубо говоря, поисковая система по запросу выдает список страниц, содержащих данное слово или выражение. В типичном случае количество таких страниц очень велико, так что необходимо выдавать их в порядке убывания важности. Как же Google находит этот порядок На каждой странице имеются гипертекстовые ссылки на другие страницы. Можно рассматривать множество всех web-страниц как ориентированный граф, ребра которого –– гиперссылки. В первом приближении можно считать, что важность страницы измеряется количеством указывающих на нее ссылок. Однако же эту меру можно уточнить, если заметить, что не все ссылки равноправны: ссылка с важной страницы имеет пропорционально больший вес, а ссылка на страницу, указывающую на много других страниц, имеет пропорционально меньший вес. Это приводит к следующему определению, содержащему, на первый взгляд, порочный круг: каждая страница передает свою важность тем страницам, на которые с нее идут ссылки, деля ее между этими страницами поровну; важность каждой страницы –– это то, что она получает от всех страниц, у которых на нее есть ссылки. Тем не менее классическая теорема, принадлежащая А. А. Маркову, показывает, что это определение корректно. Остается найти численные значения важности и перечислить страницы в порядке убывания этих значений.

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 54 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.