WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 29 | 30 || 32 | 33 |   ...   | 54 |

202 Ч II. М В формуле () присутствуют два интеграла совершенно разной природы. Действие S = L является обычно величиной классической p (L –– локальный лагранжиан). Красивая недавняя идея, возникшая в результате совместной работы физиков и математиков (основную роль сыграли Виттен [ 4] и Атья [ ]; ключевой исходный пример принадлежит А. С. Шварцу), состоит в рассмотрении тех интегралов по траекториям, для которых действие является топологическим инвариантом траектории p. Локально это означает, что классические уравнения движения (S) = 0 выполняются тождественно. Пример такого функционала действия –– инвариант Черна––Саймонса, определенный на пространстве связностей в векторном расслоении на трехмерном многообразии. Квантовые наблюдаемые (их выбор и название мотивированы теорией сильных взаимодействий) –– это петли Вильсона: усредненные следы операторов монодромии вдоль замкнутых кривых на базе.

В этом контексте алгебраические свойства интеграла по траек ториям, отражающиеся в аддитивности L и вытекающей из нее p «мультипликативности» выражения (), оказываются настолько сильными, что с их помощью удается определить достаточно жесткую математическую структуру «топологической квантовой теории поля», которую можно изучать точными математическими методами. См.

[ 3] и [2] по поводу недавних математических результатов в этой области.

История интеграла в таком виде, как мы ее рассмотрели, укладывается в концепцию Тойнби «вызов––ответ». Вызовы приходят из широко понимаемой физики (включающей в себя геометрию). Можно привести убедительные доводы в пользу того, что евклидова геометрия есть на самом деле кинематика твердого тела в отсутствии гравитации (искривленного пространства-времени) и что изобретение и развитие первых неевклидовых геометрий (постоянной кривизны) было тесно связно с физикой. Гаусс хотел узнать, какова реальная геометрия межзвездного пространства. Гильбертовское возвращение к аксиоматике было математическим ответом на вызов, состоящий в открытии множественности возможных геометрий реального мира.

§ 4. Раскол Основной тезис этой части моего доклада состоит в том, что главное событие во взаимоотношениях математики и физики в первой половине XX века –– это возникновение отчуждения между ними после нескольких веков тесного сотрудничества.

С Расхождение, начавшееся еще в 880-х годах, было связано с углублением понимания двух микромиров: математического, воплощенного в идее классического континуума действительных чисел, и физического, доступного эксперименту.

Грубо говоря, на рубеже XIX и XX веков Пеано, Жордан, Кантор, Борель, Стилтьес и Лебег открыли и обнародовали новые и очень тонкие свойства континуума, непрерывности и измеримости. Они дали последовательно ряд определений интеграла, все в большей общности, и открыли конструкции и доказательства существования для многих странных математических объектов, которые не принадлежали миру классической геометрии и анализа, но существование которых приходилось признать как следствие из классических способов математических рассуждений, использованных, как тогда казалось, по максимуму.

Растущее недовольство многими контринтуитивными открытиями заставило математиков предпринять самоанализ, концентрирующийся вокруг нескольких основных вопросов: Что такое математическое доказательство Какой смысл следует придавать утверждению о существовании того или иного математического объекта Каков статус математической бесконечности Результаты этой рефлексии хорошо известны. Пятьдесят лет самонаблюдения были весьма плодотворны с математической точки зрения: их итогом было появление зрелой математической логики, включая теорию доказательств, теории вычислимости, а также возникновение ясной картины все расширяющихся языков и систем аксиом, которые математики должны были принимать в своем поиске математической истины.

Между тем физики были заняты совершенно другими поисками.

Планковское открытие кванта действия, анонсированное 4 декабря 900 года, ознаменовало начало квантовой эры. Физика нуждалась в изощренной математике, необходимой для формулировки новооткрытых неклассических законов, а от новой математики никакого толку не было. Все, что было нужно, срочно изобреталось или переоткрывалось: матричная алгебра, спиноры, пространство Фока, дельта-функция, теория представлений группы Лоренца. Никто из пионеров (Бор, Эйнштейн, Паули, Шрёдингер, Дирак) не пользовался интегралом Лебега и не интересовался мощностью континуума.

Логика интересовала их и того меньше.

Это не означает, что физики не интересовались философскими вопросами, напротив, этот интерес присутствовал. Но если математики обсуждали взаимосвязь языка и мышления, то физиков волновали 204 Ч II. М отношения языка и реальности. Основная проблема, занимавшая критиков классической математики, состояла в невыразимости бесконечности посредством языка, все конструкции которого синтаксически конечны. Основная проблема, составлявшая предмет спора Бора и Эйнштейна, состояла в невыразимости квантовой неопределенности, проистекающей из того, что семантика языка классична по сути. Философия математики и философия физики почти полностью утратили точки соприкосновения. И математик Брауэр, и физик Паули яростно критиковали то, что они считали неадекватностями в современной им науке, но при этом у них не было ни единой совпадающей идеи. Математическая критика становилась все более и более аутичной, тогда как физическая критика была направлена на то, чтобы найти лучшие способы описания сложной реальности3.

Традиционные профессиональные связи также оказались разорваны. От первых успехов квантовой электродинамики в тридцатых годах и до возобновления взаимодействия в шестидесятых математики не внесли почти никакого вклада в квантовую теорию поля –– основную физическую исследовательскую программу XX века. Точно так же и физики не обращали внимания не только на математическую логику, что понятно, или на аналитическую теорию чисел, что соответствовало традиции, но и на зарождающуюся алгебраическую топологию. Тридцать лет спустя топология станет новым полем для сотрудничества двух сообществ. Парадоксальным образом математики от этого возобновленного сотрудничества получили больше, чем физики: новые инварианты трех- и четырехмерных многообразий, квантовые группы, квантовые когомологии –– все это плоды сотрудничества с физиками.

В нарисованную нами картину хорошо укладывается следующее эмпирическое наблюдение. Как только возникает нужда в новом математическом инструменте, предназначенном для понимания физики, так физики очень быстро изобретают для этих целей новый или модифицируют уже имеющийся алгебраический формализм. Мы уже упоминали алгебру Гейзенберга, спиноры и дельта-функцию Дирака.

Можно сюда добавить уравнение Швингера––Дайсона (для не определенного другим способом фейнмановского интеграла), интеграл Березина на супермногообразиях и виттеновские топологические инварианты, выраженные как фейнмановские интегралы топологической Характерно, что Харди в своей лекции «Математическое доказательство» [ 0] ( 928 год) даже не упоминает о существовании квантовой механики.

С квантовой теории поля. Все это –– только малая часть изобретений, которые к настоящему моменту полностью усвоены и преобразованы в строгую математику.

И «только» в том случае, когда приходится иметь дело с инфинитарными конструкциями, то есть с предельными переходами различных видов, математики делают свою работу без посторонней помощи. Согласно Бурбаки [3], в XIX столетии вклад математиков в теорию интеграла состоял исключительно в тщательном анализе пределов.

После создания современного понятия топологического пространства и открытия предельных переходов, на которых основывается теория меры, следующий крупный пакет поразительно новых инфинитарных конструкций был введен в обращение Александром Гротендиком, с его подходом к гомологической алгебре, производными категориями и функторами, топосами и ситусами. Но это уже другая история.

§ 5. Обсуждение При прямом контакте между математическим и физическим способами мышления зачастую возникает напряжение. Основные ценности различны, допустимые типы социального поведения вступают в противоречие, промежутки времени, в течение которых та или иная задача привлекает внимание публики, выглядят несоизмеримыми4.

В статье [5], представляющей собой замечательный пример самонаблюдения, Ф. Дайсон продемонстрировал, сколь непроницаемыми могут оказаться перегородки между математикой и физикой в сознании одного и того же человека. Мы были бы гораздо терпимее друг к другу, если бы могли увидеть в себе две разные личности, столь убедительно описанные Дайсоном. Недавняя дискуссия [, 2] продемонстрировала, сколь уязвимым становится наше сообщество, когда в период возобновленного плодотворного сотрудничества мы пытаемся согласовать наши взгляды на то, что можно и что нельзя считать доказательством, что можно и что нельзя публиковать и какими должны быть правила признания академических заслуг.

Описание возникающих при этом психологических затруднений на печатные страницы попадает редко. Интересный и относительно недавний пример доставляет реплика Маклейна в дискуссии [ 2], из которой мы процитируем только одну фразу: «А когда я приехал на конференцию, чтобы понять, как используется один мой небольшой результат, я услышал лекции по „топологической квантовой теории поля“ –– без всякого определения; мне сказали, что это понятие возникло на одной из предыдущих конференций, так что „все это знают“».

206 Ч II. М Все это, к счастью, не выходит за пределы нашей социальной жизни. Похоже, что глубокие открытия выживают, как мы ни путаемся в шнурках собственных ботинок, и что именно дополнительность математического и физического мышления делает взаимодействие математиков и физиков плодотворным.

Во второй половине XX века главное расхождение в способах представления наших идей состоит не столько в нашем отношении к строгим доказательствам, сколько в отношении к точным определениям.

Математики развили очень точный общепринятый язык для выражения своих мыслей. Эта точность выражается в первую очередь в определениях объектов, с которыми они работают, формулируемых обычно в рамках более или менее аксиоматизированной теории множеств (или категорий), а также в искусном использовании метаязыка (основанного на нашем естественном языке) для придания статуса утверждениям. Все прочие механизмы математической строгости вторичны, включая и понятие строгого доказательства. На самом деле, если исключить прямые ошибки, то основная трудность при проверке доказательства состоит в недостаточности или отсутствии определений. Попросту говоря, нас больше беспокоит, когда мы не пони маем, что автор хочет сказать, чем когда нам не вполне ясно, верно ли то, что он утверждает. Когда все определения и ограничения четко прописаны, пробелы в рассуждениях находятся легко. Хороший математический текст вполне можно написать на стадии, когда доказательства еще неполны или отсутствуют, но осмысленные догадки уже образуют красивую систему; выдающимися примерами являются гипотезы Вейля и программа Ленглендса, но есть множество примеров и меньшего масштаба.

Этимология слова o-предел-ение (и в русском, и в европейских языках) показывает, что первая задача определения –– установить строгие границы. Пусть вы в своем исследовании рассматриваете только локально компактные топологические пространства со счетной базой, только конечномерные алгебры Ли, только грубые пространства модулей алгебраических кривых и т. п.; если в докладе на профессиональном семинаре вы забудете указать эти ограничения, то вам об этом вежливо напомнят. Если же вы претендуете на то, что сделали что-то серьезное, то вашу работу внимательно рассмотрят на предмет всех возможных опасностей, проистекающих от невыполнения условий различных определений.

Разумеется, наши определения отнюдь не произвольны. Одна из функций хорошего определения –– содержать в себе аналогии между С различными ситуациями, так что клетка, которой является определение, должна иметь оптимальный размер. Например, есть серьезные доводы в пользу того, что самый важный результат теории групп –– это само определение абстрактной группы и ее действия на множестве, поскольку это определение описывает структуру, постоянно возникающую в геометрии, теории чисел, теории вероятностей, теории пространства-времени, теории элементарных частиц и т. д. Вся идеология трактата Бурбаки состоит в том, что математика представляется в виде строения, поддерживаемого строгой системой хороших определений (аксиом основных структур). А поскольку хорошее определение нередко оказывается результатом работы целых поколений крупных математиков, может возникнуть сильное искушение поверить, что все хорошие определения нам уже известны.

Если, напротив, неопытный читатель попробует почитать действительно интересную физическую статью, то при попытке выяснить значение наиболее употребительных терминов он почувствует себя, как в пустыне. Что такое алгебра токов, преобразование суперсимметрии, топологическая теория поля, фейнмановский интеграл, наконец Это весьма открытые концепты, и именно из-за этой открытости они и интересны.

Итак, вот чему учит история наших двух ремесел: мы не можем жить друг без друга. По крайней мере у некоторых из нас жизнь станет скучной, если в ней слишком долго не будет места контактам с хорошей физикой.

Ценнее всего именно взаимодействие с чудовищно отличной системой ценностей.

Проницательная статья Харди Гранта [9] показывает, что, если воспользоваться терминологией истории культуры по Исайе Берлину, математика является весьма классицистским предприятием:

она основана на общепризнанном понятии об истине и путях ее постижения и строит при этом устойчивую систему. Романтическая революция XIX века не оказала реального внимания на математику в основном потому, что в математике мало места для индивидуальных капризов.

В XX веке романтизм приходит из физики: бескрайние просторы Вселенной, чудесно-случайное поведение микромира, субъективизм наблюдателя и мощь ненаблюдаемого, Большой взрыв, Антропный принцип, наш роман с непочтительной Природой в лихорадке робости и мегаломании.

Математика привносит во все это гигиенические навыки и головные боли.

208 Ч II. М Литература. Atiyah M. F. Topological quantum field theories // Publ. Math. IHES. 989.

Vol. 68. P. 75–– 86.

2. Blanchet C., Habegger N., Massbaum G., Vogel P. Topological quantum field theories derived from the Kaufman bracket // Topology. 995. Vol. 34, № 4.

P. 883––927.

3. Bourbaki N. lments d’histoire des mathmatiquess. Hermann; Paris, 974.

Pages:     | 1 |   ...   | 29 | 30 || 32 | 33 |   ...   | 54 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.