WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 23 | 24 || 26 | 27 |   ...   | 54 |

Квантовая электродинамика описывает, в частности, процессы, в которых не сохраняется число частиц: вакуум рождает электронпозитронные пары, они аннигилируют. Из-за того, что энергия рождения (не меньшая, чем 2mec2) в сотни раз больше энергии характерного кулоновского взаимодействия (благодаря значению ), удается провести эффективную схему вычислений, в которой эти радиационные поправки не отбрасываются начисто, но и не «портят жизнь» теоретика безнадежно.

Теоретического объяснения величины не существует.

У математиков есть свои замечательные спектры: спектры выделенных линейных операторов –– генераторов простых групп Ли в неприводимых представлениях, объемы фундаментальных областей, размерности пространств гомологии и когомологий и т. п. Простор для фантазии, отождествляющей спектры математиков и спектры физиков, открыт –– нужны скорее принципы, ограничивающие выбор. Но вернемся к константам.

Следующий их тип, занимающий много места в таблицах, это:

в) Коэффициенты пересчета из одних масштабов в другие, например, из атомных в «человеческие». К ним относятся: уже упомянутое число Авогадро N0 = 6,02 · 1023 –– по существу, один грамм, выраженный в единицах «масса протона», хотя традиционное определение немного другое, а также такие вещи, как световой год в километрах.

Наиболее отвратительны для математика здесь, конечно, коэффициенты перехода от одних физически бессмысленных единиц к другим, М столь же бессмысленным: от локтей к футам или от Реомюра к Фаренгейту. По-человечески это иногда самые главные числа; как мудро заметил Винни-Пух: «Не знаю, сколько в нем литров, и метров, и килограмм, но тигры, когда они прыгают, огромными кажутся нам».

г) «Диффузные спектры». Это –– характеристика материалов (не элементов или чистых соединений, а обыкновенных технологических марок стали, алюминия, меди), астрономические данные (масса Солнца, диаметр Галактики...) и многие в том же роде. Природа производит камни, планеты, звезды и Галактики, не заботясь об их одинаковости, в отличие от электронов, но все же их характеристики меняются лишь в достаточно определенных пределах. Теоретические объяснения этих «разрешенных зон», когда они известны, бывают замечательно интересными и поучительными.

Серию таких объяснений собрал В. Вайскопф в прекрасной статье «Современная физика в элементарном изложении» (Успехи физических наук. 97. T. 03. Вып.. С. 55–– 79).

Вот пример физического рассуждения из этой статьи, в котором свои роли играют все наши главные герои: «Высота гор определяется фундаментальными физическими постоянными». Имеется в виду вот что: самая высокая вершина Земли Джомолунгма (Эверест) имеет высоту около 0 км; почему нет более высоких гор Оказывается, даже без учета геологических механизмов выветривания и разрушения высота горы ограничена несколькими десятками километров из-за конкретных размеров Земли и значений фундаментальных констант. Аргументы Вайскопфа таковы: гора слишком большой высоты не сможет существовать из-за ожижения своей нижней части под давлением верхней. Подсчет высоты, при которой давление еще не достаточно для ожижения, дает оценку a0 1 · · 40 км, G N1/3 A5/где = 0,02 –– характеристика теплоты плавления (вполне оцениваемая через фундаментальные константы); –– постоянная тонкой струк туры, G = Gm2/hc; N 3 · 1051 –– число протонов и нейтронов в состаp ве Земли; A 60 –– средний атомный вес вещества горы. Только число N здесь не фундаментально. Но и его место на диффузном спектре масс планет ограничено фундаментальными постоянными. Вайскопф с помощью совсем грубых оценок показывает, что N не может превосходить примерно 1053, иначе вещество планеты не сможет существовать в виде неионизированных атомов. Наконец, оценка N снизу получается, если потребовать чтобы высота гор на планете была не 68 Ч II. М больше ее радиуса, т.е. чтобы планета была в основном круглая, иначе и о горах нельзя говорить! Эта оценка приводит к величине больших астероидов.

3. Капля молока, или Наблюдатель, наблюдение, наблюдаемое и ненаблюдаемое...Что наблюдалось бы, если не глазами во лбу, то очами умственными, когда орел, несомый силой ветра, выпустит из своих когтей камень Г. Галилей Глазами во лбу мои сверстники наблюдали, как летит бомба, когда открывается замок бомбодержателя, на фоне дымного неба, на экранах кинохроник и на тысячах детских рисунков; я сам их рисовал.

Попробуем забыть об этом и посмотрим на мир очами умственными, как учил простодушного Симпличио наш вечный современник Галилео Галилей.

Изолированная система. Среди всех абстракций классической физики одной из главных является идея изолированной, или замкнутой, системы. Эта часть Вселенной, эволюция которой в течение некоторого периода существования определяется лишь внутренними законами. Внешний мир или не взаимодействует с системой вовсе, или в некоторых моделях это взаимодействие учитывается суммарно как эффект связей, внешнего поля, термостата (таким образом, мы пользуемся словами «изолированная», «замкнутая» шире, чем общепринято; изолированность относится, скорее, к математической модели). Петли обратной связи нет или она искусственно перерезана. Мир разбирается на детали, узлы и сборки, как в заводских спецификациях. И в самом деле, это идеология не только Человека Размышляющего, но Человека Делающего. Винтики и шестеренки большой машины мира, когда их поведение понято, могут быть собраны и соединены в новом порядке. Так появляется лук, ткацкий станок или большая интегральная схема.

Для математика изолированная система –– это: а) ее фазовое пространство, т. е. множество мгновенных состояний движения системы; б) множество кривых в фазовом пространстве, изображающих возможные истории системы, проходимые ею с течением времени последовательности состояний. Первое –– кинематика, второе –– динамика. Важно отличать состояние системы от состояния движения:

М первое традиционно задается координатами, второе –– координатами и скоростями; зная лишь координаты, мы не можем предсказать дальнейшее движение системы, но зная координаты и скорости –– можем. Предположение о том, что замкнутую систему можно описать хоть каким-то фазовым пространством и системой кривых в нем (иногда все вместе называют фазовым портретом), –– это математическое содержание классического принципа детерминизма.

Один из знаменитых парадоксов Зенона Элейского можно истолковать как первую догадку о роли фазового пространства: стрела летящая и стрела неподвижная в каждый момент времени находятся там, где они находятся; чем же отличается полет от неподвижности Ответ: видимое место стрелы есть лишь проекция на пространство положений ее «истинного места» в пространстве пар (положение, вектор скорости).

Классическая замкнутая система изолирована от всего внешнего мира, значит, и от внешнего наблюдателя. Она изолирована от воздействий, которые на нее может оказать наблюдатель. Наблюдение –– не воздействие. Наблюдение –– это важнейший мысленный эксперимент, который можно произвести над системой и цель которого состоит в первую очередь в локализации системы в ее фазовом пространстве. Можно сказать и наоборот: фазовое пространство есть множество возможных результатов мгновенных полных наблюдений.

Полное наблюдение позволяет вычислить полную эволюцию классической системы; существование полных наблюдений –– это другая форма постулата детерминизма. Эволюция –– это набор результатов наблюдений во все моменты времени. Идея мысленного наблюдения без воздействия подкрепляется рассмотрением разных способов наблюдения, более приближенных к реальности, где воздействие входит в схему, но может быть сделано сколь угодно малым или полностью учтено в расчетах, т. е. контролируемо. Эти рассмотрения, по существу, состоят в том, что изолированная система S включается как часть в большую изолированную систему (S, T). Наблюдению отвечает акт слабого взаимодействия между S и T, почти не нарушающий эволюции S (может быть, включенный ненадолго и тут же выключенный). Принципиально важно здесь вот что: к объединению (S, T) все равно применяется абстракция мысленного наблюдения, уже не влияющего на эволюцию объединенной системы. Кроме того, предполагается, что S может стать частью (S, T), не потеряв своей индивидуальности, ненадолго, обратимо.

Это очень естественный постулат для человека, главное средство наблюдения которого –– видение. Электромагнитные взаимодействия 70 Ч II. М столь слабы, что в масштабах от космических до человеческих взгляд на систему ничуть не действует на нее.

Умственные очи должны видеть в фазовом пространстве механики, в пространстве элементарных событий теории вероятностей, в кривом четырехмерном пространстве –– времени общей теории относительности, в комплексном бесконечномерном проективном пространстве квантовой теории. Чтобы понимать видимое глазами во лбу, мы должны знать, что оно есть лишь проекция на сетчатку бесконечномерного мира. Образ платоновской пещеры кажется мне лучшей метафорой структуры современного научного знания: мы в самом деле видим лишь тени, ибо тень –– лучшая метафора проекции.

Человеку психологически очень трудно выйти за пределы привычных пространственных трех измерений. Но мы вредим себе, пытаясь описать квантовые внутренние степени свободы неловкими словами вроде «значение проекции спина на ось z» –– вектор спина находится в совсем другом пространстве, чем ось z. Стоит вспомнить, что и трехмерность мира вошла в сознание после огромных усилий –– ее научили нас видеть художники Возрождения. Уччелло на десять лет удалился от дел, чтобы посвятить себя изучению перспективы. Современная математика среди прочего –– это суровый тренаж многомерной перспективы по унифицированной программе. Если верить нейропсихологам, левая и правая части мозга при этом ведут себя, как слепой и его безногий поводырь, которого первый несет на своих плечах.

В классике наблюдатель, в общем, представлен системой координат в основных пространствах теории. Единица измерения определяет координату в спектре измеряемой величины. Когда эти единицы выбраны, координатные функции, т.е. наблюдаемые величины, отождествляют пространство положений, фазовое пространство или их части с подмножествами Rn и Cn математиков. Теория с наблюдаемыми величинами хороша, поскольку она одновременно описывает и идеи, и их наблюдаемые «тени». Теория с наблюдаемыми величинами плоха, поскольку может оказаться проще, поучительнее, вернее как можно раньше явно отделить наблюдаемое от наблюдателя и изучать их соотношение как отдельный объект исследования. Цвет по Ньютону и Эйлеру –– это спектральный состав светового излучения в диапазоне длин волн около полумикрона; цвет по Гёте –– это то, что мы видим. Поразительно, насколько эти два представления не поддаются прямому сравнению –– их связывает лишь сложная и нетривиальная физиологическая теория цветового зрения. Гуманитарий Гёте не мог допустить отречения от наблюдателя, ибо вся его система ценностей М не способна существовать без идеи человеческого участия как мерила вещей. Многое можно сказать в пользу этой точки зрения. Многое можно и возразить; часто лучший способ узнать себя –– отвернуться от себя. Ньютоновская теория цвета –– и все последующие физические теории –– призваны объяснить, что такое свет безотносительно к тому, что его можно видеть. Для Гёте свет –– это главным образом то, что можно видеть. И опять, как всегда, оказывается, что видимое нужно объяснять через невидимое.

«Все движения, замечающиеся у небесной тверди, принадлежат не ей самой, а Земле» (Коперник, 5 5). После этой фразы, сдвинувшей Землю, все теории, основанные лишь на «замечающемся», стали архаизмом еще до своего рождения.

Классический наблюдатель живет в мире человеческих масштабов, и концепция классического наблюдения претерпевает естественные изменения при переходе к масштабам космологии или микромира. Расстояния, времена, энергии и действия астрономических явлений столь велики, что гипотезу о невлиянии наблюдателя хочется принять без дальнейших обсуждений. Другие проблемы наблюдения выступают на передний план; две из них можно кратко суммировать в виде вопросов. Можно ли рассматривать Вселенную как замкнутую систему Как относиться к теории, описывающей явления, которые не могут наблюдаться из-за их разрушительного влияния на наблюдателя или из-за того, что какие-то области пространства-времени от него принципиально изолированы (Звездные температуры, массы, давления, гравитационные поля черных дыр, условия Большого Взрыва.) Самые принципы описания замкнутых систем основаны на гипотезе их воспроизводимости –– фазовое пространство системы реализует идею осуществимости разных состояний и разных путей эволюции. Как совместить эту идею с единственностью эволюции, данной нам в наблюдениях системы Ответ, конечно, связан с представлением о локальном взаимодействии «частей мира» между собой и о существенной одинаковости законов физики, действующих в разных частях. В самые простые и самые фундаментальные модели Вселенной (модель Фридмана, модель Эйнштейна––де Ситтера) заложена идея однородности, проявляющейся в существовании большой группы симметрии математической модели. Во всех моделях космологии на первый план выступает аспект представления о замкнутой системе, который затемнен в описании более привычных примеров –– степень огрубления деталей. В космологической модели мира не остается и следов обыденности. Но вопреки этому или благодаря 72 Ч II. М этому статья в «Успехах физических наук» может начинаться фразой:

«Мы были бы счастливы, если бы Лебедь Х- оказался черной дырой» (Успехи физических наук. 978. Т. 26. Вып.3. С. 5 5). Мы знаем кое-что о мире потому, что мы счастливы познавать его.

Принципы квантового описания. Итак, идеальный наблюдатель макромира не может его изменить, но даже идеальный наблюдатель микромира не может его не изменить. Это объясняется в бесчисленных изложениях квантовой механики, но, кажется, мы понимаем это очень плохо. Квантовая механика не просто научила нас новым математическим моделям явлений, она явила образец нового соотношения между описанием и явлением. В частности, целый ряд характеристик этих моделей на естественном языке приходится объяснять, привлекая идею «ненаблюдаемости». Смысл этого слова меняет оттенки, как Протей: ненаблюдаемы фаза пси-функции, виртуальный фотон, цвет кварка, разница между тождественными частицами и многое другое.

Попробуем взглянуть на геометрию квантовой механики умственными очами.

Pages:     | 1 |   ...   | 23 | 24 || 26 | 27 |   ...   | 54 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.