WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 21 | 22 || 24 | 25 |   ...   | 54 |

на новом идейном уровне возрождается столетней давности идея Ранкина и Томсона о том, что атомы суть «вихревые кольца основной жидкости». Дело в том, что уравнения для связностей Янга––Миллса в отличие от уравнений Максвелла нелинейны.

Небольшая историческая справка о первооткрывателях солитона, содержащая нравоучительные детали. Дидерик Иоханнес Кортевег родился в 848 году и умер в 94 году в Голландии. Он был известным ученым, и его памяти посвящено несколько некрологов. Ни один из некрологов даже не упоминает работы, в которой был открыт солитон. Сама эта работа представляет собой, в сущности, отрывок из диссертации Густава де Фриза, выполненной под руководством Кортевега и защищенной декабря 894 года. Де Фриз был гимназическим учителем, и о нем почти ничего не известно.

Множества, формулы и расщепленный мозг. Каково соотношение между математическим текстом и его содержанием в широком смысле слова (множественностью его потенциальных содержаний) М Мы пытались показать, что между уравнениями, скажем, Максвелла и их прямым истолкованием в терминах физических понятий должен быть построен промежуточный теоретико-множественный образ, интерпретация –– посредник, функционально подобный языкупосреднику в современных лингвистических моделях машинного перевода. На самом деле внимательный анализ научного мышления позволил бы обнаружить целую иерархию языков-посредников, участвующих в потенциальном объяснении таких понятий, как «число», «фотон» или «время». Однако большинство этих объяснений существует в непроявленном, незаконченном и зыбком облике, часто специфичном для индивидуального сознания, поддающемся коммуникации лишь в той мере, в какой удается использовать средства естественного языка. Естественный язык играет огромную роль в открытии, обсуждении и хранении научных знаний, но очень плохо приспособлен к точной передаче содержания этих знаний и той их обработке, которая составляет важную часть научного мышления.

У него иные функции и иные достоинства.

Язык современной, теоретико-множественной математики может осуществлять роль такого языка-посредника благодаря его уникальной способности одновременно формировать геометрические, пространственные, кинематические образы и максимально точную запись их математического содержания в формализме. Канторовское определение множества, которое приведено выше, с долей иронии называли «наивным», сравнивая его с определением точки по Евклиду как «места без длины и ширины». Эта критика связана с непониманием того, что фундаментальные понятия математики, в данной системе не сводимые к более элементарным, обязательно должны вводиться двумя способами: содержательным («наивным») и формальным. Цель содержательного определения –– создание первоначального, еще не вполне оформленного образа, настройка разных индивидуальных сознаний на один лад, как камертоном. Формальное же определение вводит, собственно говоря, не понятие, а термин, не образ «множества» в структуру сознания, а слово «множество» в структуру допустимых языковых текстов о множествах, которые описываются правилами их порождения примерно так же, как инструкции по АЛГОЛу описывают правила составления программы. В пределе идеализации вся математика может предстать как потенциальная совокупность грамматически правильных текстов на формальном языке.

В этом образе есть странная и для многих притягательная эстетика уродливости. Возник он в работах мыслителей, задумывавшихся над тем, как согласовать веру в абсолютную истинность математи 56 Ч II. М ческих принципов с абстракциями бесконечных множеств, бесконечных процессов проверок и т. п., через которые эта истинность вводится. Исходная гипотеза Давида Гильберта состояла в том, что эти абстракции, строго говоря, не нуждаются в такой «почти физической» и потому сомнительной интерпретации и что их можно считать чисто языковыми фактами. «Бесконечность» –– это слово, а не явление, помогающее каким-то образом узнать истины о конечных вещах. Мы уже упоминали, что позже Г показал, что такое языковое поедель нятие «доказуемой истины» является несравненно более узким, чем абстракция истины, вводимой через идеи бесконечных проверок.

Внешние, естественнонаучные, прикладные, в широком смысле слова, аспекты математического знания при их гносеологическом анализе позволяют понять кое-что о математическом творчестве и диалектике его взаимоотношений с гёделевским запретом. Принятие интерпретации формализма, физической в том или ином смысле этого слова, вера в адекватность этой интерпретации и знание какихто черт поведения физического явления позволяет указать или постулировать математические истины, не доступные «чистой интуиции».

Это –– источник расширения самой базы математического знания.

В более частном плане соотношение между математическим символизмом, неформальным мышлением и познанием природы в последние годы стало возможно рассматривать с точки зрения новых данных о структуре и функциях центральной нервной системы.

Мозг состоит из двух полушарий, левого и правого, которые перекрестно связаны с правой и левой половинами тела. Нейронные связи между полушариями проходят через мозолистое тело и комиссуры.

В нейрохирургической практике известен метод лечения, в частности, тяжелых эпилептических припадков, состоящий в рассечении мозолистого тела и комиссур, что прерывает прямые связи между полушариями. После такой операции у больных наблюдается необычная картина «двух сознаний». По лаконичной формулировке американского нейропсихолога К. Прибрама, результаты исследования таких больных, а также больных с различными поражениями левого и правого полушарий, можно резюмировать следующим образом: «У правшей левое полушарие обрабатывает информацию во многом подобно цифровой вычислительной машине, тогда как правое полушарие функционирует скорее по принципам оптических и голографических систем обработки данных». В частности, левое полушарие содержит генетически заданные механизмы усвоения естественного языка и, более общо, символизма, логики, «рацио»; правое, молчаливое полушарие ведает образами, целостным восприятием, интуицией. ФункциоМ нирование человеческого сознания в норме постоянно обнаруживает это сочетание двух компонент, одна из которых может проявляться заметнее другой, и открытие их физиологических носителей проливает свет на природу и типологию математических интеллектов и даже школ в проблеме оснований математики. Можно строить догадки о том, что два великих интеллекта, стоявших у колыбели современной математики, –– Ньютон и Лейбниц –– принадлежали соответственно к правополушарному и левополушарному типам. Ньютону мы обязаны созданием математического анализа и первыми фундаментальными результатами математической физики –– закон всемирного тяготения, вывод из него законов Кеплера, теория приливов. Лейбниц же ввел обозначения, в частности y dx, которыми мы пользуемся и поныне.

По словам историка математики Д. Стройка, он был «одним из самых плодовитых изобретателей математических символов» и даже свою версию математического анализа изобрел в результате поисков универсального языка. (Интересно, что Ньютон, также не избежавший этого поветрия времени, не создал формализма анализа и доказательства излагал геометрически.) Принимая современное представление о функциональной асимметрии мозга, можно высказать предположение о том, что язык теории множеств позволяет кратчайшим путем достичь сбалансированной активности правого и левого полушарий работающего математика, чем и объясняется его замечательная эффективность.

Я хотел бы в заключение привести слова И.А.Соколянского, посвятившего жизнь воспитанию слепоглухонемых детей. Они содержатся в письме к Вяч.Вс.Иванову, из книги которого «Чет и нечет. Асимметрия мозга и знаковых систем» (М.: Советское радио, 978) почерпнута и следующая информация.

Если у слепоглухонемого ребенка не поражены отделы центральной нервной системы, ведающие наглядным восприятием внешнего мира, то его можно научить языку, даже звуковому, и обеспечить полное развитие его личности. Этот процесс происходит в несколько этапов. Сначала ребенок поддерживает постоянный контакт с матерью или воспитательницей, держится за руку или юбку, ходит по дому, ощупывает предметы ее действий, и на этой основе вырабатывает язык жестов, в той или иной мере имитирующий действия и свойства предметов. В норме это функция правого полушария. Открытие Соколянского состояло в том, что на следующем этапе можно научить ребенка перекодировать язык жестов в пальцевую азбуку, так что жест-иероглиф замещается жестом-словом. Символ перевода –– специальный жест, подобный математическому знаку равенства, –– 58 Ч II. М две вытянутые параллельно ладони. Смысл этого перекодирования состоит в том, что информация передается в левое полушарие, которое, будучи предрасположено к научению дискретному и символическому языку (не обязательно звуковому!), начинает развивать эту функцию практически с той же скоростью, что и у здорового ребенка, –– овладение языком происходит за два-три года. Синтаксис такого левополушарного языка отличен от «синтаксиса мира», запечатлеваемого в правом полушарии, и тождествен синтаксису словесного естественного языка. Семантика же его, видимо, более ограничена или, во всяком случае, неадекватна семантике зрячего и слышащего.

Как объяснить, что значит «звезда», тому, кто никогда не увидит звезд Соколянский дает замечательный ответ: «Словесная речь, как бы ею ни овладели безъязычные, сама по себе не может обеспечить слепоглухонемому полноценное умственное развитие в такой степени, чтобы он мог отразить внешний физический мир так, как это доступно нормальному человеку. Истинная картина этого мира может быть раскрыта только математически развитым мышлением...» Что такое звезда, спрашивают и те, кто видит звезды, потому что видеть глазами –– это еще очень мало.

2. Физические величины, размерности и константы:

откуда в физике берутся числа Главная цель физических теорий –– найти число, и притом с достаточной точностью! Р. Фейнман Это преувеличение. Главная цель физических теорий –– понимание. Способность теории найти число –– полезный критерий правильности понимания.

Числа в физике –– чаще всего значения физических величин, описывающие состояния физических систем. Величины –– это родовое имя для таких абстракций, как расстояние, время, энергия, действие, вероятность, заряд и т.п. В свою очередь, состояние системы характеризуется значениями на нем достаточно полного набора физических величин, а систему естественнее всего описывать заданием множества возможных ее состояний. Выйти из этого логического круга, ограничиваясь чисто словесными описаниями, нельзя. Он может быть разорван в двух местах –– операционально, когда мы объясняем, как измерить массу Земли или электрона, и математически, когда мы предлагаем теоретическую модель системы или класса систем М и объявляем, что масса m –– это, скажем, коэффициент в формуле Ньютона F = ma.

Содержательная, хотя и простая математика, связанная с физическими величинами, начинается с напоминания о том, что значения физической величины (точнее, скалярной вещественной величины) можно отождествлять с числами, вообще говоря, только после выбора единицы измерения и начала отсчета (нуля). Разумно не вносить этого произвола как можно дольше –– некоторые из самых фундаментальных физических законов гласят, что у определенных физических величин имеются естественные единицы. Разберемся в этом подробнее.

Спектр скалярной величины. Назовем спектром величины множество всех значений, которые она может принимать (на состояниях данной системы, определенного класса систем, «всех» систем –– это следует уточнять по мере необходимости). Основной математический постулат, который можно считать определением скалярной величины в теоретических моделях, состоит в том, что спектр всегда является подмножеством одномерного аффинного пространства над вещественными числами. Иными словами, он лежит на прямой, где не отмечены нуль и единица; если две такие точки отметить, спектр превратится в множество вещественных чисел. Вся соль в том, что иногда эти точки можно отметить не как попало, а пользуясь самим спектром. Вот основные примеры.

а) Скорость. Наименьшую (относительную) скорость естественно назвать нулем. Вторая отмеченная точка на спектре скоростей –– это c, скорость света. Общепринятый (после создания специальной теории относительности) постулат о спектре скоростей состоит в том, что он заполняет отрезок от нуля до c. Тогда естественно объявить c единицей скорости и считать, что все скорости заполняют отрезок [0, 1]: в более обычных обозначениях так ведут себя отношения v/c.

В обыденной жизни мы редко встречаемся со скоростями, большими 10-6 по этой шкале (скорость звука).

б) Действие. Это, может быть, самая важная величина во всей теоретической физике, и мы посвятим ей отдельную главку. Она принимает значения не на мгновенных состояниях, а на отрезках истории физической системы. В классической физике она определяет физически возможные отрезки истории –– на них действие принимает наименьшие допустимые значения. Естественный нуль на спектре действия –– это действие «бесконечно короткой» истории системы. Верхней границы спектра действия мы не знаем. Можно представить себе космологическую модель, где этой границей будет действие Вселен 60 Ч II. М ной на всем отрезке ее истории от Большого Взрыва до Большого Коллапса, если последний предсказывается моделью.

Тем не менее вторая отмеченная точка на спектре действия известна: это знаменитая постоянная Планка h. В человеческих масштабах она крайне мелка –– действие ручки, написавшей слово «действие», имеет порядок 1029 1030 h. Прагматически говоря, h указывает, когда следует пользоваться квантовомеханическими, а не классическими моделями: в тех случаях, когда нас интересуют такие подробности истории системы, на которых действие меняется всего на несколько h. (Впрочем, это условие не необходимо и не достаточно.) Выбирая h в качестве единицы действия, мы можем считать, что спектр действия есть полупрямая [0, ), а спектр приращений действия –– вся вещественная прямая.

Таким образом, точка h на спектре действия «не видна» в отличие, скажем, от c, которая является правым концом своего спектра. Это очень странно. Впрочем, есть два контекста, в которых h проявляется.

Pages:     | 1 |   ...   | 21 | 22 || 24 | 25 |   ...   | 54 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.