WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |

М — подготовка данных к обработке;

Н — выписка полученных ответов на открытые вопросы с целью их типологии;

1. Выделение объектов генеральной совокупности О — разработка инструкций по кодированию открытых вопросов;

Генеральная совокупность — это множество всех едиП — обработка и анализ информации, подготовка и обсуждение предварительниц, являющихся объектами исследования.

ного отчета об исследовании;

На этом этапе подготовки исследования необходимо опР — доработка окончательного варианта отчета по итогам исследования;

С — подготовка презентации отчета; ределить, какие субъекты составляют исследуемую генеральную Т — консервация материалов исследования;

совокупность. Как правило, субъекты, входящие в генеральную У — оформление отчета;

совокупность, неоднородны, поэтому при определении типичных Ф — презентация отчета заказчику представителей объекта исследования некоторые группы могут быть упущены. Особенно сложно представить все элементы геРис. 5 Сетевой график маркетингового исследования по методу критинеральной совокупности, состоящей из организаций, поскольку ческого пути не все фирмы афишируют свою деятельность. В качестве генеральной совокупности могут быть определены рынок в целом, сегмент рынка или целевая группа субъектов.

131 2. Определение метода обследования Отбор респондентов может сопровождаться систематичеВ зависимости от объема генеральной совокупности и це- скими и случайными ошибками. Систематические ошибки возлей исследования могут быть использованы методы сплошного никают при неправильно выбранной процедуре составления выили выборочного обследования. борки. Случайные ошибки существуют всегда, поскольку свяМетод сплошного обследования заключается в изучении заны с влиянием сложно-предсказуемых факторов. Влияние слувсех единиц генеральной совокупности. Метод связан с высоки- чайности полностью устранить невозможно, но величину слуми затратами на проведение исследования, его использование чайной ошибки можно определить с помощью статистических оправдано, например, в случае малого количества потребителей, методов. Систематическую ошибку невозможно оценить, но представляющих сегмент, или в случае, когда объем покупок можно устранить, изменив процедуру выборки.

данного клиента составляет значительную долю от емкости рын- Учитывая наличие двух типов ошибок при формировании ка в целом. выборки, выделяют случайные (вероятностные) и неслучайные Метод выборочного обследования предоставляет ин- (детерминированные) виды процедур составления выборки.

формацию о генеральной совокупности на основании обследова- Неслучайные процедуры формирования выборки ния только ее части, поэтому данные, полученные в ходе выбо- Неслучайные процедуры составления выборки самим рочного обследования, имеют вероятностный характер. На прак- процессом формирования предполагают неслучайный выбор тике это означает, что в результате исследования определяется не респондентов, чье мнение может отличаться от мнения генеральконкретное значение, а интервал, в котором находится искомое ной совокупности в целом, порождая тем самым наличие неслузначение. Вероятность, с которой можно утверждать, что ошибка чайной (систематической) ошибки данных в результатах исслевыборки не превысит некоторую заданную величину, называется дования. При использовании неслучайных процедур отбор ресдоверительной вероятностью. пондентов в выборку производится на основе каких-либо приняВыборка — это группа объектов исследования, которая тых условий, ограничивающих круг вероятных участников исявляется носителем характеристик всех единиц генеральной со- следования. Например, в выборку отбираются только те респонвокупности, например, группа потребителей, представляющих денты, которые владеют компьютером или зашли в магазин с интересы и вкусы всего целевого рынка. до 11 часов.

Метод выборочного обследования обеспечивает меньшую Возможны следующие виды неслучайных выборок:

точность по сравнению с методом сплошного обследования, од- • произвольная выборка — элементы выбираются без нако он менее трудоемок. Целесообразно использование данного плана, бессистемно; способ недорог и удобен, но порождает неметода при наличии большого числа однородных единиц гене- точность и нерепрезентативность;

ральной совокупности. • типовая выборка — набор ограничен лишь характерныСвойство выборки отражать характеристики генеральной ми (типичными) элементами генеральной совокупности; испольсовокупности называется репрезентативностью. Различие между зуется, например, при формировании фокус-групп; требует, одхарактеристиками генеральной и выборочной совокупностей на- нако, наличия сведений о типичности изучаемых объектов;

зывается ошибкой выборки, которая зависит от выбранной про- • квотированная выборка — структура выборки строится цедуры составления (формирования) выборки. по аналогии с распределением определенных признаков в гене3. Процедуры формирования выборки ральной совокупности; от каждой группы генеральной совокупПроцедура составления выборки — это последователь- ности отбираются участники исследования, количество которых ность отбора респондентов в выборку. пропорционально представительству группы в генеральной совокупности.

133 Случайные процедуры формирования выборки • кластерная (серийная) выборка — генеральная совоПри формировании случайной выборки применяют купность делится на идентичные группы (гнезда, клумбы или следующие процедуры. кластеры). Кластеры должны быть по возможности однотипны• простая выборка — элементы выбираются с помощью ми, состав кластера должен быть подобен генеральной совокупслучайных чисел; при данном подходе предполагается, что для ности. Случайным образом из генеральной совокупности отбивсех единиц генеральной совокупности вероятность быть из- раются несколько групп, которые подвергаются сплошному бранной в выборочную совокупность одинакова (значение веро- обследованию (одноступенчатый подход). Возможен и ятности равняется отношению объема выборки к объему гене- двухступенчатый подход, когда первоначально формируется ральной совокупности). Метод очень трудоемок и обязывает выборка из кластеров, из нее случайным образом отбираются иметь список всех единиц генеральной совокупности; единицы исследования (т. е. единица выборки предыдущей • систематическая (механическая) выборка — первый стадии становится генеральной совокупностью для элемент выбирается с помощью случайных чисел, остальные последующей). Недостаток этой процедуры формирования элементы выборки отбираются через равные интервалы (интер- выборки — кластеры могут быть неоднородны между собой, вал скачка), которые равны отношению объема генеральной со- однако эта процедура проста и экономична.

Многоступенчатые выборки вокупности к объему выборки. Данный порядок формирования Любой тип выборки может быть как одно-, так и многовыборки значительно упрощает процедуру, однако может внести ступенчатым. Многоступенчатая выборка применяется в тех слуискажения в структуру выборки, если генеральная совокупность чаях, когда извлечь выборку из генеральной совокупности пряупорядочена по какому-либо признаку. мым путем затруднительно, при этом все единицы отбора на каЕсли генеральная совокупность упорядочена по сущест- ждой ступени равноценны для обследования.

венному признаку (признак считается существенным, если он Многоступенчатый отбор, соединяющий различные проопределяет состояние исследуемого показателя), то для умень- цедуры формирования выборки, делает выборку комбинированшения искажений выборочной характеристики следует отбирать ной. Такой вариант формирования выборки позволяет добиться единицы выборки из середины установленного интервала. Ана- наиболее рациональных и экономичных условий сбора данных в логично поступают и в том случае, когда генеральная совокуп- соответствии с поставленными задачами.

ность упорядочена по второстепенному признаку, частично 4. Определение объема выборки влияющему на изучаемый объект. Определение размера выборки является некоторым комЕсли генеральная совокупность упорядочена по ней- промиссом между теорией о точности результатов исследования тральному признаку (который не оказывает влияния на поведение и возможностью ее практической реализации по объему затрат изучаемого объекта), то допустимо включение в выборку любой на сбор информации.

единицы генеральной совокупности из установленного интерва- Наиболее применимы следующие методы определения ла; объема выборки:

• стратифицированная (типическая или групповая) вы- 1. Произвольный метод расчета; в этом случае объем выборка — генеральная совокупность делится на группы с набором борки определяется на уровне 5-10 % от генеральной соопределенных признаков (сегменты или страты), в каждой из ко- вокупности.

торой с помощью случайного отбора формируется своя выборка; 2. Традиционный метод расчета; связан с проведением весовой коэффициент каждой страты в общем объеме выборки периодических ежегодных исследований, охватывающих, насоответствует ее удельному весу в генеральной совокупности; пример, 500, 1000 или 1500 респондентов.

135 3. Статистический метод расчета; основывается на опре- — найденная вариация генеральной совокупности, в % или в долях; q делении статистической надежности информации. = 100 - р; — допустимая ошибка, в % или в долях;

4. Метод расчета с помощью номограмм.

5. Эмпирический метод; в этом случае выборка считается б) повторная выборка при известной дисперсии изучаемого достаточной, когда все новые сведения вносят лишь незначипризнака ():

2 тельные изменения (которыми можно пренебречь) в уже собранt n = ; (4.2) ные результаты исследования.

6. Затратный метод; основан на размере расходов, котов)бесповторная выборка (при исключении возможности порые допустимо затратить на проведение исследования.

вторного попадания единицы генеральной совокупности в выборку) Статистический метод расчета объема выборки при известном объеме генеральной совокупности и известном распреНа объем статистической выборки влияют следующие делении контролируемого признака:

факторы:

2 Nt 1. Наличие сведений об объеме генеральной совокупности n =, (4.3) и степени ее однородности.

N2 + t pq 2. Требуемая точность результатов, регулируемая величигде N — объем генеральной совокупности;

ной максимально допустимой ошибки репрезентативности и величиной доверительной вероятности, с которой делается заклюг) бесповторная выборка при известной дисперсии изучаемого чение о достоверности результатов исследования.

признака:

3. Наличие сведений о средних показателях генеральной 2 Nt совокупности по исследуемому признаку или об интервале варьn = ; (4.4) 2 ирования признака(дисперсии).

N2 + t 4. Возможность повторного попадания единицы генеВыборка признается малой, если ее объем превышает 5% генеральной совокупности в выборку.

ральной совокупности, в этом случае объем выборки может быть отПри определении объема выборки для больших совокупкорректирован:

ностей (когда объем выборки составляет менее 5% генеральной N - n совокупности) могут использоваться следующие формулы:

n = n, (4.5) N -а)повторная выборка (при возможности повторного попагде п'— объем выборки для малой совокупности, п — объем дания единицы генеральной совокупности в выборку) при неизстатистической выборки, N — объем генеральной совокупности.

вестном объеме генеральной совокупности, но известном распределении контролируемого признака:

Расчет статистической выборки при нормированном отt pq n =, (4.1) клонении t = 2 и допустимой ошибке 5% (см. табл. 12) показывает, что для больших совокупностей объем выборки может быть определен любым способом, поскольку используемые практичегде t — нормированное отклонение, которое определяется по выбранские приемы приводят, скорее, к завышению объема обследуеному уровню доверительной вероятности (при 95% доверительной мой совокупности.

вероятности t = 1,96; при 99% доверительной вероятности t = 2,58); р 137 Таблица Например, из проведенных ранее исследований известно, что Зависимость размера выборки от величины генеральной совокупности распределение ответов на интересующий исследователя вопрос (на(при нормированном отклонении t=2 и допустимой ошибке 5%) пример, о статусе пользователя) составило 60% и 40% (60% респондентов ответили утвердительно на вопрос о пользовании продуктом и Объем гене- 500 1000 2000 3000 4000 5000 10000 > 40% — отрицательно). Доля целевых респондентов в общем объеме ральной сореспондентов составляет 70%. Для более детального анализа необходивокупности мо получить 100 положительных ответов. Чтобы получить этот реОбъем вы- 22 286 333 350 360 370 385 зультат, требуется опросить 238 человек:

борки n = = 238. (4.8) Из табл. 12 видно, что при размере генеральной совокупности 0,6 0,более 5000 ее величина не влияет на размер выборки, поэтому формула может принять следующий вид (величиной 1/N можно пренебречь):

Использование номограмм для расчета объема выn = 1/ 2. (4.6) борки Таким образом, при отсутствии точной информации о размере и Стремление упростить процедуру расчета объема выборхарактеристиках генеральной совокупности (при условии, что она ки приводит к созданию таблиц, шкал или программ, которые не менее 5000) достаточно включить в выборку 400 ее представитеориентированы на обеспечение статистической надежности инлей. Однако следует учесть, что если мы собираемся контролировать формации, но при этом не обременяют пользователя знаниями структуру выборки по нескольким параметрам, то объем выборки будет специальных формул из области статистики. Например, сущестгораздо больше. Г. А. Черчилль в своей работе «Маркетинговые исслевует калькулятор выборки (www.shortway.to/few/calculator.htm), дования» приводит на этот счет правило: «Объем выборки должен на сайте Gallup (www.gallup.ru) можно найти таблицу, связыобеспечивать не менее 100 наблюдений для каждой первостепенной и вающую показатели размера выборки, распределения ответов с не менее 20-50 наблюдений для каждой второстепенной классификавеличиной стандартной ошибки (табл. 13).

ционной составляющей»; также следует сделать поправку на то, что Таблица Взаимосвязь показателей размера выборки, распределения ответов отдельные респонденты, включенные в выборку, могут оказаться вне и стандартной ошибки досягаемости или отказаться участвовать в исследовании.

Количество респондентов, которых необходимо опросить для Распределение Размер выборки, ед получения необходимого количества положительных ответов на интереответов, % 25 50 100 150 200 300 500 сующий вопрос, можно рассчитать по формуле:

Pages:     | 1 |   ...   | 15 | 16 || 18 | 19 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.