WWW.DISSERS.RU


...
    !

Pages:     | 1 |   ...   | 22 | 23 || 25 |

B Bepe.

C Cpaa o acya.

5 a epa pepe oeaec aeco peypoa eoe PAX pacea oax apaepo acpoe peyopo A e epa pepe.

B Moy epa pepe.

C apa epa pepe.

6 cox ao caaec pace oax apaepo acpoe peyopo - -peyopo A ooo.

B yx.

C pex.

7 B paoaaeco eoe pacea oax apaepo acpoe peyopo caec, o oecee aa aac ycooc, ec AX paoyo cce opyoc payca c epo a opaeo eeceo oyoc A epeceac.

B acac.

C He axo py a pya.

8 p ao ae oea epea K, oop e ece, cpoc AX paoyo cce A K = 0.

B K = 1.

C K = Ko.

9 Ec oaae oeaeoc M = 1,62, o oe epea pae A K = 1/r.

B K = r.

C K = 1/r + 1.

10 p pacee oax acpoe apaepo -peyopa ocoa pee Tp paec A Tp = 1.

B pooo.

C Tp = To.

10 PEEHE TPEHPOBOHX AAH Pae 1 A Cooyoc execx cpec, ox eoop poecc, aaec oeo ypae. pepo oea ypae, apep, ec poecc pea, epya p.

B Bxoe epeee c ypa, ec o cya oepa ypaeo epeeo cooec c eoop aoo ypae.

C epeea, oopy eoxoo oepa cooec c eoop aoo ypae, aaec ypaeo.

2 A B ACP, opaeo a pc. 1.2, peaoa p peypoa o ooe o oye.

B Ec peyop ee peypyee oece p ooe peypyeo epeeo o aaoo ae (y(t) = y(t) ya), o aoe peee aaec peypye o ooe, y(t) aaec ooee oo ypae.

C Haoee eo ec opoaa ccea peypoa.

3 A ea ccea oocc accy cce o oco a ypae a poecco ypae.

B acc "xapaep yopoa" ec a:

a) cce caa;

) cce popaoo peypoa;

) cee cce;

) cce oaoo ypae;

) aae cce.

C acc "xapaep oa cao" opaeec a:

a) epepe cce;

) cpee cce, oopx e yce, peee, poe.

Pae 1 A Ca aaec peyp, ec eo aeaec pecaee ec apaee aaa y pee.

B Cyecy peeoe acooe pecae cao.

C oco a peypx cao oocc: epoec, o epoec eepoec.

2 A peopaoae ype aaec oepaop.

B Xapaep coca cepa epoecoo caa c:

a) cep cea cpe, aco ocox apo pa ocoo acoe;

) e oe epo caa T, e "ye" cep; p T oya eepoecy y;

) c yeee eoc yco p ocoo epoe ay apo yeac, a cep caoc "ye";

) ec c yeee eoc poyox yco yea ay o aoy A0 = 1/, o x oceoaeoc cpec oceoaeoc ea-y, a ay cep ocooy cex aco ae An = 1/T.

C Cepao xapaepco eepoeco yaaec ea, e A ecoeo ae ay epoeco y.

3 A ea-ye aaec y, yoeopa yco:

.

B Ca e eoo caa a cceyeo oee oa ye peoo op e, o pacxo oaaeoo eeca ec cao a ey.

C apoec ca xapaepyec ayo, epoo ao.

Pae 1 A pae ca aac ypae, ocae oeee cce peypoa ycaoec pee p ocox oecx.

Caeco xapaepco oea (cce) aaec acoc xoo e o xoo caeco pee.

B pae a aac ypae, ocae oeee cce peypoa p eycaoec pee poox xox oecx.

C paec peepyap, epeca eoc, epep xec peaop ooo epeea ocac ooe epea ypaee c oco oea epoo opa.

2 A oaaeca eoc cce poo cepe, coco pex oo:

1 onm: a xo cce oaec xoo ca x1(t) opeeec xoa oopaa y1(t) ycaoec pee;

2 onm: a xo cce oaec pyo ca x2(t) opeeec oopaa y2(t);

3 onm: a xo cce oaec ca, pa cye xox cao x3(t) = x1(t) + x2(t), opeeec xoa oopaa y3(t). aee poepec oee cooec y3(t) = y1(t) + y2(t) oo oea pee. Ec oo oec, o oec p cyepo, ccea, ceoaeo, ec eo.

B Oco aec xapaepca, coye eop aoaecoo ypae, c: epeaoa y, epeaoe ypaee, epexoa y, ecoa y, aco xapaepc:

ayo-aoa, ayo-acoa, ao-acoa, eeceo-acoa.

C Cxea pacea a c oo peex xapaepc coco ceyx ao:

1) paec caap ca a xoe (t) = ((t), , n(t));

2) xoo ca pooo op pecaec a cyepo caapx cao x(t) = 1(t) + 22(t) + + nn(t);

3) opeeec pea cce a caape ca ;

4) xoo ca y(t) opeeec a cyepo xox cao yi(t):

.

3 A peopaoae aaca aaec peopaoae y x(t) epeeo t y x(s) pyo epeeo p oo oepaopa.

Oco coca peopaoa aaca c ceye:

a) eopea eoc ;

) eopea oo ;

) eopea ayxa ;

) eopea aaa p.

B.

C epeaoo ye oea aaec ooee peopaoaoo o aacy xooo caa y(s) peopaoaoy o aacy xooy cay x(s) p yex aax ycox.

Pae 1 A Oco coca oopoo oopae c:

a) oo oeco ococ oopaaec pyo oeco ococ;

) ecoeo a yo oopaaec ao e ecoeo a yo, y coxpac;

) peyo oo oeco ococ oopaaec ao e oo peyo pyo oeco ococ, apaee oxoa coxpaec;

) ype oac ooo peyoa peopayec o ype oac pyoo peyoa.

B Re() = M() cos ();

Im() = M() sin ().

C ;

.

2 A cepeao oya AX X. AX pecae coo ooee ay xooo caa aye xooo caa. X paoc a xooo xooo caa.

B ;.

C.

3 A Becoa y pecae coo opaoe peopaoae ype o AX.

B Ec h(t) epexoa y, o W(i) = (i) h(i).

C.

Pae 1 A Ooe epea ypae ocac aepoecoe eo epoo opa, aepoecoe eo opoo opa, oeaeoe eo.

B peax ee AX M() 0 p. eao-epepyeo ea M() p, eo eocyecoc ae a peex xapaepc, a a h(t) = (t), a w(t) = '(t).

C Toe e opaec a:

a) caece, y oopx caeca xapaepca oa o y;

) epepye, y oopx caeca xapaepca paa y;

) acaece, y oopx caeca xapaepca e cyecye.

2 A oooypo cce aoaecoo peypoa oo aca epeaoe y o aay peypoa, o aay oye, o aay o.

B p oceoaeo coee:

;

;

.

p apaeo coee:

;

;

.

C e ooex peopaoa pooc epeoc ya epe ye epeoc cyaopa epe cyaop.

3 A ec e peaye -ao peypoa.

B Beee ao peypoa epeao cocae yeae cpoece peyopa.

C a "" y epeaox y peyopa yae o a, o peyop aec ccey o py opaeo opao c.

Pae 1 A Ccea, oopa oce c oye pae ooe cocoe paoec, ooe o epoaaoo, aaec epao.

B Ccea aoaecoo ypae e ycoa, a a o ope Sooe.

C Ccea aoaecoo peypoa, y oopo op xapaepcecoo ypae pacooe cea o o oc, ycoa.

2 A Heoxooe ycoe ycooc ec ocao cce, ocaxc ooe epea ypae epoo opoo opa.

B B cooec c pepe ypa ccea ycoa: 1 = 4 > 0; 2 = 5 > 0;

3 = 5 > 0.

C cceoa ycooc c oo pep Payca eoxoo pacoaa ypaee, oopoe ocae ccey aoaecoo ypae.

3 A Ec paoya ccea e ycoa, o oo, o aya ccea a ycoo, eoxoo ocaoo, o AX paoyo cce oxaao oy (-1, i0) m/2 pa, e m co pax ope xapaepcecoo ypae paoyo cce.

B B cooec c pepe Mxaoa ccea aoaecoo ypae e ycoa, a a op e c ece epeyc ey coo.

C B cooec c pepe Haca ccea ycoa, a a AX paoyo cce e oxaae oy (1, i0).

Pae 1 A Ce ycox cce apyec a pep ycooc Haca.

B paa ycooc cce aoaecoo peypoa, c peyopa, e a acpoex apaepa, cpoc ococ apaepo acpo s s0 (-pe-yop) s2 s1 (-peyop) o ypae cooeceo.

C aaa cea cce peypoa c - -peyopo peaec ooao, a a ec a ypae a eecx p s1 ( s0).

2 A ope eoa oe aaca ycooc oocc cee ycooc cee oeaeoc.

B oaae oeaeoc o acy AX ayo cce.

C opee oe aaca ycooc oc paccopee epe pacpee ayo-aoe xapaepc.

3 A Ec aac ycooc oeaec oaaee oeaeoc M, o aya ccea oaae aa aaco ycooc, ec AX paoyo cce acaec opyoc payca r = M/(M2 1) c epo oe l = M2/(M2 1).

B aaa opeee acpoe peyopo a aa aac ycooc peaec eooao. aaa ee ecoeoe oeco pee.

C Cpyypo-eyco aac cce, oope e oy ca yco p ax oax ae x apaepo.

Pae 1 A p oaae aeca c oaae, oope oo eocpeceo o po epexooo poecca oea aeco peypoa.

oocc caeca oa peypoa, aeca oa peypoa, pe peypoa, epepeypoae, cee ayxa.

B oe aeca peypoa oeaex epexox poecco coyec cee oeaeoc.

C ooe aopo cooa epax pepe aeca ec oyee oe oe cpoec ooe peypyeo e o ycaoeoc ae.

2 A Ec BX pecaa cyo ao cocae cooecye epexo poecc, o epexo poecc pecaec cyo cocax.

B Ec BX a oc opa yeaec pa, o epexo poecc yeaec pa.

C oeoe aee epexooo poecca pao aaoy ae BX; aaoe aee epexooo poecca pao oeoy ae BX.

Pae 1 A Ce yoao cpyyp aaec ope opex eeo coacoa x xapaepc.

B o eoa pacea apaepo acpoe peyopo oocc eo PAX paoaaec eo.

C Pace apaepo acpoe peyopo aaec apaepec ceo.

2 A Oa apaepa acpoe peyopo coaco eoy PAX c acpo, oeceae aay cee oeaeoc y apaoo epaoo pep.

B aeco peypoa eoe PAX oeaec apa epa pepe.

C peyopo c y acpoe apaepa oa acpoa cooecye oa, eaa a po aao cee oeaeoc ococ acpoex apaepo, oopo apa epa pep ae.

3 A B paoaaeco eoe aac ycooc oeaec oaaee oeaeoc.

B aeco peypoa paoaaeco eoe oeaec c oo pep oao pa, aaeoc aye pe AX peao cce AX eao cce a x acoax , acoc, p = 0. co oaoc acac e:

ooceo oyaeo oec ; ;

ooceo ypaeo oec ;.

C Toa, cooecya oa acpoa -pey-opa, axoc oe aca acaeo, poeeo aaa oopa po aaoo aaca ycooc ococ apaepo acpoe T K (pe opoa oe epea).

CCO TEPATP 1 Aecee A. A., ae . X., y H. H., oe B. . Teop ypae:

e. C.: T, 1999. 435 c.

2 Coea . H., Coe A. . Teop aoaecoo ypae. M.: MXM, 1975. 165 c.

3 Cop aa o eop aoaecoo peypoa ypae / o pe. B. A. eceepcoo. M.: Haya, 1978. 512 c.

4 Teop aoaecoo ypae. . 1 / o pe. A. A. Bo-pooa. M.: Bca oa, 1986. 367 c.

5 Teop aoaecoo ypae. . 2 / o pe. A. A. Bo-pooa. M.: Bca oa, 1986. 504 c.

Pages:     | 1 |   ...   | 22 | 23 || 25 |



2011 www.dissers.ru -

, .
, , , , 1-2 .