WWW.DISSERS.RU


...
    !

Pages:     | 1 |   ...   | 20 | 21 || 23 | 24 |   ...   | 25 |

(8.18) Pc. 8.9 Cooece acao o oc accc:

a - BX; - epexoe poecc 4 Haaoe aee BX pao oeoy aeu nepexoo xapamepucmuu (puc. 8.9). (8.19) Haaoe aee MX Im(0) = 0.

5 oeoe aee BX pao aaoy aeu nepexoo xapamepucmuu. (8.20) epec peca pap epepoc e-eceo-acoo xapaepce.

yc p = 1 BX ee pap epepoc (pc. 8.10, a) Re(1) =, p o xapaepcecoe ypaee cce ye e ope s1 = i1, .e. ccee ycaaac eayxae apoece oea, ec ocae op ee.

Pc. 8.10 Pae BX:

a - c papa; - c co ocp yo Bco ocp BX, a oop Re() epexo epe y p acoe o 1, cooecye eeo ayxa oea (pc. 8.10, ).

6 mo epexoa xapaepca ea nepepeyupoaue 18 %, BX oa m nooumeo eopacmae yue acmom, m.e. Re( ) > 0,.

Pc. 8.11 BX, cooecya epexoo xapaepce c 18 % 7 co ooooo poea epexooo poecca.

mo nepexoo npoecc ue oomo xapamep, ocmamoo, mo coomemcmya ey BX Re( ) ac nooumePc. 8.12 co ooooo poea epexooo poecca:

a - BX; nepexoo npoecc o, enpepo yue acmom c ompuameo, yae, no acomo euue npouoo (puc. 8.12) Re( ) > 0, < 0.

8 Opeeee aoeo ae nepepeyupoau nepexooo npoecca max no acuyy BX (puc. 8.13), (8.21) e Remax - acaoe aee; Re(0) - aaoe aee.

Pc. 8.13 opeee aoeo ae epepeypoa 9 Ec BX a paeeao, .e. oe apocpoaa paee c aaoo aco 0 - 2 oeo aoa =, o pe peypoa epexooo poecca cce aeo peeax.

Pc. 8.14 Apoca BX paee 8.3 BCTBTEHOCT ABTOMATECX CCTEM p aae ycooc aeca aoaecx cce peoaaoc, o ae apaepo oea ypaeo ycpoca ocac poecce cyaa cce oco. B eceoc e apaep cce ocoo ec o pa pa, o a aaeoe, cyaaooe eee. poe oo, ae apaepo oy e papoc cece oyco a ooee eye ae epeex oac o pacex. B c c oae aaa opeee papoca ee apaepo cce a caece aece coca poecca ypae.

B apa apaepo cce a ee caece aece coca aac apaepec oye, a oae p o ooe xapaepc cce o pacex ae - apaepec opeoc (oa).

oe cee papoca ee apaepo cce coy oe - yceoc cce. yceoc - o coco cce e co xoe epeee oaae aeca p ooe oo oo ee apaepa o cxooo paceoo ae. ooae poooooo coca coyec oe "pyoc" cce, coxpae co coca p x apaepecx oyex, aac py poac.

oece oea yceoc c:

-- y yceoc;

-- oe yceoc.

ye yceoc aaec aca pooa ao-o aeco xapaepc aoo-o oaae o eeyc (appyeoy) apaepy ki. Hapep, epeaoo y W(s, ki), ace o apaepa ki, y yceoc opeeec a (8.26) epexoo y h(t, ki) o ooe apaepy ki:

(8.27) e ki0 - paceoe aee apaepa ki.

Ha pae aco coy oocey y yceoc, oopa cooeceo (8.26), (8.27) aec:

Ta, oooypo cce aoaecoo peypoa, cocoe oea Wo(s) = k0 (s) peyopa Wp(s), oocea y yceoc o ooe apaepy k0 opeeec coooee, c yeo (5.86) oo peopayec y, (8.28) oopoe oaae, o yceoc oo cce pey-poa ee coc oea ooc opeeec oo epeaoo ye paoyo cce. e ee aee y yceoc, .e. e pyee ccea, e ee oo-eoe ooee xoo epeeo , ceoaeo, ye aeco cce.

Ec y yceoc paaec co, o oa aaec oeo yceoc. C oo oea yceoc oeaec yceoc cox oaaee aeca, apep, oaae oeaeoc, epepeypoae. Oea ee xoa poecca o ooe oye pooc o opye y(t) = Vkg(t)k.

o ooe eco apaepec oye pe p cyepo, oop oo pocppoa cey pepo.

yc ccea ypae ocaec epea ypaee epoo opa Ty'(t) + y(t) = k x(t) , oopo oc e y yceoc Vky(t) = ;.

Ec poepepoa cxooe ypaee o apaepa k T poec oyex paex aey epe y yceoc, o oya ypae yceoc paccapaeo cce:

Opee , oo a eee xoa poecca ypae a ce ee apaepo k T:

y(t) = k + T.

y yceoc pe poepoa cce c ae eee aecex oaaee p ooe ae apaepo cce o paceo.

8.4 OHTE O PABEMOCT HAAEMOCT OETA p poepoa cce ypae eoxoo peapeo oea ae cpyype coca oeo a ypaeoc aaeoc.

Oe aaec ooc ypae, ec eo c oo eoopoo opaeoo ypaeo oec oo epeec eee oeoo epaa pee oo aaoo coco aaoe oeoe cocoe. ocyece aoo epeoa oea eoxoo, o e ocaoo, o aa oopa coco acea xo o oo cocax ypaeo oec.

e caoap oe aaec ooc aae, ec o peyaa ae (epe epe ce) xox oopa oo opee (occao) peye ae oopa coco. oo aaeoc occaaaeoc oea eoxoo (o e ocaoo), o aa oopaa coco a caa o ee epe c o aaex cao.

8.5 TPEHPOBOHE AAH 1 Hapy c poeo ycooc p cee cce aoaecoo peypoa ec poea aeca peypoa, xapaepya ooc aoc poea epexooo poecca. oe aeca peypoa oeceo ope coyc oaae aeca, oope opaec a pe, ocee, acoe, epae.

A ae oaae aeca aac p oey B ao ocex oaaee aeca peypoa coy oe aeca oeaex epexox poecco C o ec ooe ao cooa epax pepe aeca peypoa 2 B eepo pae poo coyc acoe eo cceoa cce ypae, oope oo oe aeco peypoa o eece aco xapaepca.

A Ec BX pecaea cyo, o o pecae coo epexo poecc B Ec BX o oc oopa ye pa, o a oee ce epexo poecc C a opee aaoe oeoe ae epexooo poecca 8.6 TECT 1 ao oaae oocc pye px oaaee aeca peypoa A Cee ycooc.

B Bpe peypoa.

C Haaoe ooee.

2 ao oaae aeca aaec caeco oo A Macaoe ooee o aaoo ae.

B Ooee o aaoo ae ycaoec coco.

C Paoc ey aca a ae epexooo poecca.

3 Cee ayxa opeeec a A %;

B %;

C %, e y1, y2, y3 - ay xox oea.

4 Ec - cee ycooc, o pe peypoa aepoecx epexox poecco opeeec a A ;

B.

C.

5 Oea caeco o oe oyea a A ;

B ;

C.

6 epa apa pep aeca peypoa - o A.

B J = y2(t)dt;.

C.

7 p aae epexooo poecca c oo BX eoxoo pec cooece aca o oc oopa. Ec BX yeac pa, .e. caa Re(), o epexo poecc A ec pa - y(t);

B ec pa - ;

C Coec pa -.

8 coe ooooc poea epexooo poecca ec A Re() > 0; ;

B Re() > 0; ;

C Re() < 0; < 0.

9 CHTE CCTEM ABTOMATECOO PEPOBAH 9.1 AA CHTEA Paccopee e aa oocc aaa aaa aoaecx cce.

aa cea oo paccapa a opae aaa aaa. O opaec a a a: o-epx, peyec opee cpyypy, o-opx, apaep cce o aa oaae aeca.

Ce ec ae ao poepoa ocpypoa cce, oco aoee a poee peyao, oyex eope aoaecoo ypae. p pee aa ooo cea eoxoo opee aopecy yoay cpyyp cce.

Aopecy cpyypy cce axo p oo aeaecx eoo a ocoa peoa, acax aeaeco ope. Bc c poeypy oca aopeco cpyyp aa eopeec ceo aaec ocpypoae cce ypae.

Ce yoao cpyyp aaec ope opex eeo cce coacoa x xapaepc. o a poepoa e ee oa cpoo aeaeco oco oocc oac eepoo cycca. oceoaeoc pee aa ooo cea oe pao.

B pocx cyax aay oa yaec pe c eoooeco o pe eao oceoaeoc. p poepoa cox poex cce ypae pe ay oceoaeoc, a pao, oaaec eooo, ooy oce cyae aay cea pea cey opao.

Baae, cxo peoa aae cce ya yco ee pao, o aaoa cepoo oopyoa pa yoao eoxoe ee:

peypy opa, coeoe ycpoco, a, oope ece c oeo ypae opay eey ac cce. ae a ocoa peoa caec aec coca cce opee ee eey ac, aopeca cpyypa oopo axoc c yeo coc pax yoao eoxox eeo. Texeca e peaa ocyecec c cooae caapx ypoax peyopo pax oppepyx oecpyx ycpoc. poecc opeee aopeco yoao cpyyp cce ypae eco epeeac ey coo, x pxoc o o ecoo pa. Ooaeoe peee o cpyype cce paec a ocoe opocca ey ooc aeco pao cce, c oo copo, pocoo aeoc - c pyo.

ae ao poepoa cce ypae ec pace acpoex apaepo paoo peyopa. B paee 7 oeaoc, o o ceo ycox cce oaoc opeeee apaepo acpoe peyopo p eco cpyype. He poc eo pacea acpoex apaepo oooypo cce aoaecoo ypae.

B acoee pe papaoao oo eoo pacea acpoe peyopa, o x c oee o, o pyoe, pye - poc, o pe. Bo cex eoax eoxoo oece poecc peypoa, a pao, yoeop y pa pep, o oopx ooe oece aa aac ycooc, a opo - oece aeco peypoa.

9.2 BOP OTMAHX HACTPOE PETOPOB METOOM HEATXAX OEAH Meo eayxax oea, peoe ye epo Hoco, ec pe eoo opeee oax acpoe peyopo, oecea eoxo aac ycooc, eoopy cee ayxa eoy aecy oy.

Pacem peymopo c ou napaempo acmpou pooc o a ocoaec a pacee pecoo ae acpo poopoao cocae, p oopo ACP ye axoc a pae ycooc. paee pacea o acpo oc pep ycooc Haca, o oece aac ycooc. eoopoo ae aco p oo oc coooee Wp.c.(ip) = -1.

Ta opao, -peyop paccaec o o aco xapaepca oea. pae pacea pecx ae acpo S1p aco p e :

o(p) = -; (9.1) S1p=. (9.2) Oaa acpoa -peyopa:

S1o= 0,55 S1p. (9.3) Pace peyopo c y oee apaepa acpo pooc a aa: a epo - opeeec pecoe aee poopoao cocae; a opo oeceaec cee ayxa = 0,8 0,9.

Oae acpo peyopo axo o cey opya:

-- -peyop S1o = 0,45 S1p ; (9.4) S0o = 0,086S1pp;

-- -peyop S1o = 0,6 S1p;

S0o = 0,192S1pp; (9.5) S2o = 0,471.

9.3 AOPTM PACETA OACT HACTPOE TOBX PETOPOB METOOM PAX Meo pacpex acox xapaepc oca paee 7 cooa p cee cce c aa aaco ycooc.

Pages:     | 1 |   ...   | 20 | 21 || 23 | 24 |   ...   | 25 |



2011 www.dissers.ru -

, .
, , , , 1-2 .