WWW.DISSERS.RU


...
    !


Pages:     | 1 |   ...   | 18 | 19 || 21 | 22 |   ...   | 25 |

7.5.2 Ccea c -peyopo Pacpea ayo-aoa xapaepca -peyopa ee .

Cyeo o xapaepc ccea ypae (7.12) opeee acpo S0 paoe aco acaec e:

(7.15) Pc. 7.15 Opeeee acpo -peyopa, oeceae aay cee oeaeoc:

a - opeeee paoe aco p; opeeee ae PAX oea p paoe acoe p Peee cce ypae (7.15) oe poeeo a aaec, a paec. paecoe peee opoo ypae c e opeee paoe aco pecaeo a pc. 7.15, a.

Ha pc. 7.15, pecaeo opeeee ae PAX oea p paoe acoe.

Hacpoa S0 -peyopa, oeceaa aay cee oeaeoc, opeeec coooee. (7.16) 7.5.3 Ccea c -peyopo Pacpea ayo-aoa xapaepca -peyopa:

, oya peyopa PAX ;

PX .

-peyop ee a apaepa acpoe S0 S1, oope ece c p oea pacey. Ccea ypae (7.12) acaec e:

(7.17) oyea ccea ooe opee oo a eecx, a ao p, ooy oa ee ecoeoe oeco pee.

oye x pee ccea papeaec ooceo ae acpoe:

(7.19) M* (m, p) = ; * (m, ) = - (m, ).

S1, Sm = m m < m m > m.

.

, :

- yx ae ocoo pee T11 (coa), T12 (y-pa), T12 > T11. a o pao, yeee ocoo pee ee yee aaca ycooc o ae o o 1, ec copaa acoa 1 = pacoaaec eee aco cpea c. Ec e copaa acoa pacooc paee aco cpea, o yeee ocoo pee aepoecoo ea ye aac ycooc.

o pao cpaeo aepoecx, oeaex ee. opcpyeo ea e ocoo pee pooooo, a pa cpyyp, ex epeaoy y paoyo cce, apep,, oo e oec, .e. c yeee T1 aac o ae yeaec.

py aoee pacpocpae ye oecee ycooc aaca ycooc ACP ec eee ee py e ooex ee, pe eee ooo oo e ea acoc o cpyyp apaepo cce ae pae peya. ooy pa op ooeoo ea oo cea, ec eca cpyypa apaep cce.

7.7 CTPTPHA HECTOBOCT Cpyypo-yco aac cce, oope p ax-o aex x apaepo oy ca yco. Cpyypo-eyco aac cce, oope e oy ca yco p ax oax ae x apaepo.

Bopoc cpyypo ycooc oa p ee ooex ee, .e. oyaea ccea oa , epy oepe, cpyypo-ycoo. B pe cyae o y cpyypo cxe oo opee, ec ccea cpyypoycoo cpyypo-eycoo.

Ccea ec cpyypo-ycoo, ec ee coca xo oo ycoe epoe oeaee e. Xopoe eoepeco eppeae ec paccopee oopaa Mxaoa.

yc ccea coco ooo eppyeo ycox epox oeaex ee. Bo cyae oopa Mxaoa ee , opae a pc. 7.19, a. Aa oo oopaa oaae, o p ocaoo ax oyex ec oopa caec eoo pao ccea caoc ycoo, ceoaeo, ccea c o eppy eo cpyypo-ycoa.

Ccea, cocoa yx eppyx ee oo ca ycox epox oeaex ee, cpyypo-eycoa. oopa Mxaoa o cce opae a pc. 7.20, , oopoo o, o a oye e yacc cy oopa pao a opao, o ccea caa ycoo.

Pc. 7.19 oopa Mxaoa c e opeee cpyypo ycooc cce, cocoe ycox epox, oeaex ee:

a - ooo eppyeo ea; - yx eppyx ee 7.8 BHE MAX APAMETPOB HA CTOBOCT p papaoe aeaecoo oca cce epeo occ e e oye, aaec peepee a apaepa cce. oceee ee oe opa epeax ypae o ycooc cy o pe "poe" ypae co y ye. Oao opex cyae oo oe e ax apaepo a ycooc.

yc a apaep xo eo xapaepcecoe ypaee cce, .e.

o ypaee acaec cey opao D(s) = D1 (s) + D0(s) = 0, (7.20) e - a apaep; D0(s) - oo opa n; D1(s) - oo opa N = m + n.

ec oo p xapaepx cya:



1 opo ce y a ey e opa aeae, m = 1. B o cyae o ope xapaepcecoo ypae s = p > 0, yxo ecoeoc o opaeo eeceo oc. p ocaoo ax aex ccea ye ycoo, ec op poeoo ypae D0(s) = 0 ee.

2 opo ce y a a opa e opa aeae, m = 2.

B o cyae ycoe ycooc cce ec ycooc pee poeoo ypae D0(s) = 0 oee epaeca.

3 Paoc opo ce aeae m > 2. Bo cyae opaca ae apaep p cceoa ycooc eoyco.

Bcpeac cya, oa a apaep xo ypaee cce e ooa. cooc ao cce opeeec e, a pacoaac yxoe ecoeoc op: cpaa cea o o oc. Pacooee x ope opeeec, a aae, cooae ypaee. oo, o cxoa ccea p ocaoo ax a ycoo, eoxoo ocaoo, o poeoe cooaeoe ypae, aoe opo, yoeop yco ycooc.

7.9 OPPETPE CTPOCTBA a ye eoopao oopoc, o peo oecee ycooc aaca ycooc cce ec eee ee ooeoo eea, oop cpae, oppepye coca cxoo cce, aaec oppepy eeo.

Ec o ee ocaoo coe, o o aaec oppepy ycpoco.

Ta opao, oppepyee ycpoco - o yoa ee cce aoaecoo peypoa o ooe, oecea eoxoe aece coca o cce. Bac ee ccey pa opao.

7.9.1 oceoamea oppeu oppepyee ycpoco aec py e cce oo oce aa e peapeoo yce. Ha pc. 7.20 opaea cpyypa cxea cce aoaecoo peypoa c oceoae oppepy ycpoco W(s).

peee oceoaex oppepyx ycpoc aoee yoo cceax, y oopx ca ypae pecae coo apee ocooo oa.

B aece oppepyx ycpoc oy pa ceye:

ueaoe uepeupyee eo W(s) = T s; (7.21) ueaoe uepeupyee eo c coecm eeue npouoo u omoeu W(s) = k(T s + 1); (7.22) uepuoe uepeupyue e W(s) = (7.23) ueaoe umepupyee eo W(s) = ; (7.24) uepuooe umepupyee eo W(s) = (7.25) Pc. 7.20 Cpyypa cxea cce c oceoaeo oppee cooae oppepyeo eea c epeaoo ye (7.21) ee oepe opa o ee ooe peypyeo e. Bo cyae eoxoo ya a cao ooee, a eo pooy, .e. oppepyee ycpoco oo pac e (7.22). Oao epeaoa y oppepyeo ycpoca oa pac e (7.23).

cooae eppyx ee (7.24), (7.25) oae opo acaa cce, o ee yxye ycooc, ooy oopeeo eoxoo oaoc o ooex cpecax oppe c e oe ycooc.

Beee poox ec o cocoo ao oppe.

7.9.2 apaea oppeu p apaeo oppe oppepyee ycpoco oaec apaeo ooy eco oco e (pc. 7.21), p o ooa oppe yx o: ypeaa pa c (pc. 7.21, a) opaa c (pc. 7.21, ). B ayo ccee paa ey a apaeo oppe caoc ycoo coc oy, ae e cac "oxae" ao c.

Oao a pae ae ceo coy opaey opay c.

B acoc o a oppepyeo ycpoca paa ceye opax ce:

ecma opama c W(s) = k = const, (7.26) e k - oe eco opao c;

uepuoa ecma opama c ; (7.27) Pc. 7.22 Cpyypa cxea apaeo oppe:

a - pa c; - opaa c ueaa ua opama c (uepeupya) W(s) = Ts; (7.28) uepuoa ua opama c (uopoa) ; (7.29) uepuoa oppemupya opama c (acmamueca oppeu) W(s) = ; (7.30) - ouupoaa opama c (uopoa c ocmamoo epaoepocm) (7.31) Aa pee pax oppepyx ycpoc ooe cea eoope o peoea ooceo x cooa. ooea eca opaa c (7.26) cy yee oea yce, o p o eoxoo ce a ocoo pee, oopa ae yeaec, ccea oe ca eycoo. Opaea eca opaa c (7.26) coyec yee epooc cce. Ta a ooee opae c ey a coo oep ycooc, o aee e ceax ooopo ye cac, o opaa c opaea. ece opae c aypy eppye coca, a e c coxpa aca. Oxa eco opao c pepaae acaece c caece. B paeco pee aoee pacpocpaee oya epoa a opaa c.

7.10 TPEHPOBOHE AAH 1 Ha ycooc cce aoaecoo ypae oaa e apaep peypyeoo oea. ocee ycooc oo ocyec opo cooecyx eeo cce peypoa, acoc, opo acpoe peyopo. Ta opao, ce ycox cce coc opeee acpoe peyopo, p oopx ccea ye axoc a pae ycooc.

A Ha ao pep apyec ce ycox cce B a opao cpoc paa ycooc cce peypoa c peyopo, e a acpoex apaepa C a cepoa ycoy ccey c- -peyopo 2 Ccea aoaecoo ypae e oo oa ycoo, o oaa eoop aaco ycooc. oce oo oe c oo opex acox eoo.

A ae opee eo oe aaca ycooc a ec B ao ec cc ee oaae oeaeoc C C oo ax acox xapaepc oc paccopee oe aaca ycooc 3 aaa cce a aac ycooc coyec aao pep Haca, a oopo ocoa ce cce, oaax aaco ycooc. p o, a p cee ycox cce, eoxoo opee acpo peyopo, p oopx ccea oaae aa aaco ycooc.

A Ec aac ycooc oeaec oaaee oeaeoc, o a oe aac ycooc ayo cce B Ooao e peaec aaa opeee acpoe - -peyopo a aa aac ycooc C o oaae ep "cpyypa eycooc" 7.11 TECT 1 peeoe aee acpoe -peyopa, p oopo ccea axoc a pae ycooc opeeec o coooe:

A ;

B ;

C.

2 a opee cee ycooc A ;

B ;

C.

3 a oy pacpey ayo-aoy xapaepcy A aeo epeaoo y S = i.

B aeo epeaoo y S = i + M.

C aeo epeaoo y S = -m + i.

4 ao oaae opeee aac ycooc A Cee ayxa.

B oaae oeaeoc.

C Bpe peypoa.

5 a oaaee opeeec aac ycooc p pacee acpoex apaepo eoo PAX A aac ycooc a ae.

B oaae oeaeoc.

C Cee oeaeoc.

6 p pacee peyopo a aa aac ycooc x acpo pac A Be po aaoo aaca ycooc.

B Ha po aaoo aaca ycooc.

C Byp oac, opaeo po aaoo aaca ycooc.

7 cce peypoa c -peyopo paa aaoo aaca ycooc cpoc oopaax A S1 - S0.

B Re(m, ) - Im(m, ).

C Re() - Im().

8 ae acoe xapaepc coyc p aae cce peypoa a aac ycooc o oy ae A AX oea AX peyopa.

B AX paoyo cce.

C AX ayo cce.

9 paa aaoo aaca ycooc opeeec o ypae A Wo(-mp, ip) Wo(-mp, ip, S0, S1) = 1.

B Wo(ip) Wo(ip, S0, S1) = 1.

C Wo(-mp, ip) = Wo(-mp, ip, S0, S1).

10 p cee cce a aa aac ycooc paoa acoa - o A acoa, p oopo ccea axoc a pae ycooc.

B acoa, p oopo ccea axoc a pae aaoo aaca ycooc.

C acoa, p oopo ccea axoc oac eycoo pao.

8 CCEOBAHE AECTBA POECCOB PEPOBAH Oo poe, oax p ocpoe cce aoaecoo peypoa, apy c poeo ycooc, ec aeco peypoa, xapaepyee ooc aoc poea epexooo poecca.

Ccea aoaecoo peypoa aaec aeceo, ec oa yoeope opeee exooec peoa: apep, a ye ec pea cce, ec a ee xo ecy paoo poa oye a o aay ypae, a o aay oye, .e. oeceaec paa oooc pxoa cce eoopoe ycaoeec cocoe. Taoe oe aeca aoaeco cce oxaae ee caece aece coca, paee oeceo ope oye aae oaaee aeca ypae.

Pages:     | 1 |   ...   | 18 | 19 || 21 | 22 |   ...   | 25 |





2011 www.dissers.ru -

, .
, , , , 1-2 .