WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 11 |

Поведение производной x определяется видом потенциала. Интегрируя УШ в малой окрестности точки x = a, получаем a+ dx x = a + - a - = aa+ a+ 2m 2m dx U x - E x = a dx U x, ah2 a- h то есть x непрерывна в точке x = a, если потенциальная энергия U x непрерывна в этой точке или имеет разрыв 1-го рода (конечный скачок). У потенциалов, имеющих скачки 2-го рода, x может иметь разрывы (см. пример потенциального ящика). Для U x = -G x-a имеем 2mG a + - a - = - a. 5.h Дискретные уровни в одномерной задаче всегда невырождены, то есть каждому собственному значению энергии соответствует единственная собственная функция. Допустим обратное: пусть ^ 1 x и 2 x — две разные собственные функции H, отвечающие одному значению E. Тогда 1 2m = U - E = 1 h2 или d 1 2 - 12 = 0 = 12 - 12.

dx Отсюда следует, что 12 - 12 = const. Далее, const = 0 из-за поведения n x на бесконечности. В итоге, 1 = C2.

В одномерной задаче дискретные уровни четного гамильтони^ ^ ана, H -x = H x, имеют определенную четность, то есть либо n -x = +n x, либо n -x = -n x. Действительно, для такого гамильтониана функции n x и n -x являются решениями, отвечающими одному и тому же значению En, то есть, по предыдущему утверждению, n x = Cn -x. Сделав еще одно отражение координат, получим n -x = Cn x = C2n -x, откуда C= ±1.

Пример Прямоугольная потенциальная яма глубиною V и шириною 2a, то есть -V |x| a.

Связанным состояниям отвечает энергия E<0, при этом УШ имеет вид + k2 = 0 |x| a, h = 2m|E|.

Ищем решения такие, чтобы x и x были непрерывны, чтобы x 0 при x ±и чтобы x была либо четной, либо нечет^ ^ ной функцией, так как H -x = H x.

Четные решения имеют вид A cos kx при |x| a Из непрерывности x / x в точке x = a получаем уравнение 2mV tg ka = = - 1, k h2k дающее дискретный ряд значений kn или En (энергия квантуется).

Найдите нечетные решения и покажите, что четные и нечетные уровни чередуются.

Покажите, что в мелкой яме, V h2/ ma2, существует лишь од но связанное состояние с энергией h22 2aV m E0 = -, 0 = 2m h и волновой функцией 0 x 0 e- |x|.

Оцените x и p для такой ямы. Покажите, используя условие (5.1), что потенциальной энергии U x = -G x соотвествует мелкая яма с mG 0 =.

h Осцилляционная теорема Волновая функция дискретного спектра n x, соответствующая n+ 1 -му по величине собственному значению En, обращается в нуль (при конечных x) n раз (см. примеры потенциального ящика, осциллятора и т.д.).

ВОПРОСЫ:

5.1. Найти En и n x для поля x < U x = -V 0 0 x>a 5.2. Найти уровни энергии и волновые функции связанных состояний частицы в поле двух -ям U x = -G x + a - G x - a при условии a h2/ mG. Исследовать зависимость уровней энергии от a.

5.3. Для поля, описанного в предыдущей задаче, определить x, t, если при t <0 между ямами была непроницаемая перегородка и частица находилась в стационарном связанном состоянии вблизи левой ямы.

§6. Эрмитовы операторы ^ ^ Назовем оператор B эрмитово сопряженным к оператору A, если для любых двух функций 1 и 2 справедливо соотношение ^ ^ dx 1A2 = dx B1 2.

^ ^ ^ ^ Такой оператор обозначим B = A+. Если A = A+, то есть оператор совпадает со своим эрмитово сопряженным, назовем его эрмитовым (или самосопряженным). Для эрмитова оператора ^ ^ dx 1 A2 = dx A1 2.

Собственные значения эрмитова оператора вещественны:

^ ^ ^ A =, dx A = dx A.

Отсюда следует, что =.

Аналогично показывается, что среднее значение эрмитова опера^ тора dx A в каком-либо квантовом состоянии – вещественное число. Все операторы физических величин эрмитовы.

Собственные функции, отвечающие различным собственным значениям эрмитова оператора, взаимно ортогональны. Действитель ^ ^ но, домножив A = на µ, а Aµ = µµ на, и проинтегрировав, получим dx µ = µ dx µ, то есть dx µ = 0 µ =.

В случае вырождения можно выбрать собственные функции ортогональными и, соответственно, использовать ортонормированную систему функций dx m n = mn.

Полнота системы собственных функций эрмитового оператора:

f x = an n x ; an = dx n x f x, n f x = dx f x n x n x.

n Отсюда n x n x = x - x.

n Дираковские обозначения. Матричный элемент ^ ^ Afi = dx f x Ai x = f|A|i.

В этих обозначениях эрмитовость имеет вид ^ ^ f|A|i = i|A|f, ортонормируемость означает f|i = fi, а полнота — |n n| = 1.

n ВОПРОСЫ 6.1. Найти операторы, сопряженные к операторам d d d ^ ^ ^ A =, B = i, C = mx +.

h dx dx dx ^ 6.2. Для оператора C, определенного в предыдущей задаче, найти собственные функции и собственные значения. Проверить, что собственные значения этого оператора могут быть комплексными, а собственные функции, отвечающие различным собственным значениям, не обязательно ортогональны.

^ ^ ^ 6.3. Пусть A — эрмитов оператор, A = A+. Покажите, что среднее ^ значение квадрата этого оператора неотрицательно | A2 | 0.

6.4. Найти собственные функции оператора x в x- иp-представлениях.

^ То же для оператора p.

^ ^ 6.5. Найти вид оператора A = 1/r в импульсном пространстве (задача 1.47 ГКК).

§7. Линейный осциллятор U x = m2xУровни энергии и волновые функции В этой задаче естественная система единиц включает h, m,. Из них строится единица длины = h/ m, энергии h и т.д. (найдите единицы времени, скорости, импульса, силы). Перейдем к безразмерным величинам x E x =, E = ;

h при этом волновая функция x связана с безразмерной x соотношением x/ x =.

Тогда мы получим УШ в виде d+ 2E - x = 0;

dx в дальнейшем штрихи опускаем.

При x ±имеем d2/dx2 = x2, то есть e±x /2. Поэтому ищем нормируемые, убывающие на бесконечности решения в виде = e-x /2v x, где v - 2xv + 2E - 1 v = 0.

Ищем v в виде ряда v = anxn n=Возникающее таким образом уравнение xn 2E - 1 - 2n an + n + 1 n +2 an+2 = n приводит к рекуррентному соотношению для коэффициентов 2n +1 - 2E an+2 = an.

n + 1 n +Оно означает, в частности, что функция v x содержит слагаемые одинаковой четности. Условие an+2 lim = n an n обеспечивает сходимость ряда при всех x, но v x ex при x ±. Чтобы получить x 0 при x ±, необходимо ряд для v x оборвать, положив 2E = 2n +1.

В итоге получаем уровни энергии и нормированные волновые функции 1 e-x /2 H x n En = n +, n x =, n = 0, 1, 2,....

n!2n Здесь Hn – полиномы Эрмита:

H0 x = 1, H1 x = 2x, Hn+1 x = 2xHn x - 2nHn-1 x.

Отметим, что n -x = -1 nn x.

Операторы рождения и уничтожения Введем операторы 1 a = x + i^, a+ = x - i^, ^ p ^ p 2 через которые гамильтониан записывается в виде 1 1 ^ H = ^ ^ +^ ^ = a+a + = aa+ -.

a+a aa+ ^ ^ ^ ^ 2 2 Нетрудно показать, что ^ ^ ^ ^ H^ = a+ H +1, Ha = a H - 1. 7.a+ ^ ^ ^ Пусть |n — нормированное состояние с энергией En = n +, то есть ^ H |n = En |n = n +1/2 |n.

Тогда a+ |n и a |n — состояния (ненормированные) с энергией En+^ ^ и En - 1 соответственно. Действительно, из (7.1) следует, что ^ ^ H^ |n = a+ H +1 |n = En +1 a+ |n, a+ ^ ^ а также аналогичное уравнение для a |n :

^ ^ H^ |n = En - 1 a |n.

a ^ Таким образом, действие оператора a+ на состояние |n переводит ^ его в состояние |n + 1, то есть повышает энергию состояния на (на h в обычных единицах), a+ |n = cn |n +1, 7.^ а действие оператора a на состояние |n переводит его в состояние ^ |n - 1, то есть понижает энергию состояния на 1. Это позволяет использовать удобную интерпретацию: состояние |n содержит n одинаковых частиц (квантов) с энергией E = 1 (или h в обычных единицах) каждая, оператор a+ называют повышающим оператором ^ или оператором рождения такой частицы, а оператор a — понижа^ ющим оператором или оператором уничтожения. Заметим еще, что собственные значения оператора ^ n = a+a = H ^ ^ ^ равны n, поэтому n называют оператором числа частиц.

^ Найдем коэффициент cn. Для этого вычислим норму вектора (7.2):

^ n| a^ |n = n| H +1/2 |n = n +1 = c2.

^ a+ n Отсюда cn = n +1. Таким образом, состояние |n может быть записано так:

^ a+ n |n = |0, n ! а отличные от нуля матричные элементы операторов рождения и уничтожения равны n +1| a+ |n = n| a |n +1 = n +1.

^ ^ Волновая функция основного состояния может быть найдена из условия a0 x = 0.

^ Это дает e-x /0 x =.

Для волновой функции с n>0 получаем компактное выражение ^ e-x /a+ n n x =.

n ! ВОПРОСЫ 7.1. Найти n p для линейного осциллятора.

7.2. Для линейного осциллятора сравнить классическую dW /dx и квантовую |n x |2 плотности вероятности при n = 0.

То же для dW /dp и |0 p |2.

Найти вероятность того, что в основном состоянии осциллятор находится в классичечки недоступной области |x| >.

7.3. Найти матричные элементы xfi, pfi, x2 fi для линейного осциллятора.

7.4. Найти x и p для линейного осциллятора в n-м состоянии.

§8. Временное уравнение Шредингера В классической механике импульс и энергия связаны с действием S x, t соотношениями S S p =, E = -.

x t Если в квантовой механике p p = -i, ^ h x то естественно ожидать, что E i.

h t Проверим, что для плоской волны h x, t = A ei px-Et / это так и есть: i h/t = E.

Конечно, всe это лишь наводящие соображения, показывающие естественность следующего утверждения: в квантовой механике постулируется УШ в виде r, t h ^ i = H r, t = - + U r r, t.

h t 2m Его свойства:

1. УШ линейно: если 1 r, t и 2 r, t — решения УШ, то c11 + c22 также является решением УШ (принцип суперпозиции).

2. УШ имеет первый порядок по времени, поэтому значения r, t в любой момент времени полностью определяется, если известна r, t0 в некоторый момент времени t0.

Для стационарного решения h r, t = n r e-iEnt/ плотность вероятности | r, t |2 не зависит от t. Общее решение таково h r, t = cn e-iEnt/ n r, n где cn = n r r, 0 d3r.

Таким образом, эволюция r, t с течением времени описывается уравнением h r, t = G r, r, t r, 0 d3r, G = n r n r e-iEnt/.

n Функция Грина G r, r, t удовлетворяет уравнению G ^ i = H r G h t с начальным условием G r, r, 0 = n r n r = r - r.

n Из ^ E = r, t H r, t d3r = En |cn|n видно, что cn есть амплитуда вероятности обнаружить у системы энергию En. Набор величин cn есть волновая функция системы в энергетическом представлении.

Плотность тока Изменение плотности вероятности r, t = | r, t |2 со временем определяется уравнением = +.

t t t Подставив / t из УШ, получим уравнение непрерывности i h = 2 - 2 = -j, t 2m j = -i + -i h h.

2m Для = ei имеем h j =.

m В частности, для плоской волны = A ei kr-t плотность тока равна hk j = |A|2 v, v =.

m §9. Одномерное рассеяние Для потенциальной энергии указанного на рис. 2 вида (U x при x -, U x V при x +) задача рассеяния при E > V Рис. 2: Потенциальная энергия для случая одномерного рассеяния формулируется так. Слева имеется падающая и отраженная волна, справа — прошедшая. Асимптотики волновой функции таковы:

eikx + A e-ikx, hk = 2mE x eit Beik x, hk1 = 2m E - V x +.

Плотности x-компонент тока равны:

hk hk hk j =, j = -|A|2, j = |B|2.

m m m Коэффициенты прохождения D и отражения R равны:

j k1 |j | D = = |B|2; R = = |A|2; R + D = 1.

j k j Оптический аналог — отражение света при нормальном падении на плоскую границу раздела двух сред. В оптике волновой вектор k = n, c где n — показатель преломления. Здесь нашей задаче соответствует ситуация, когда справа — вакуум, а слева — стекло.

Вслучае 0

Здесь оптический аналог — полное внутреннее отражение.

ВОПРОСЫ 9.1. Частица находится в поле U x = -G x. При t = 0 волновая функция имеет вид x, 0 = e-|x|/b / b. Найти вероятность того, что при t частица окажется в основном состоянии 0 x.

9.2. Тот же вопрос для гармонического осциллятора при e-x / 2b x, 0 =.

b2 1/9.3. Найти функцию Грина для свободной частицы.

9.4. Найти D и R для частицы в поле рис. 0 x0.

Указать оптическую аналогию. Известно, что при отражении от оптически более плотной среды происходит потеря полуволны. Чему соответствует это явление в данной задаче Рассмотреть предел h 0.

9.5. Найти D для частицы в поле прямоугольной потенциальной ямы глубины V и ширины a (рис. 4). Дать график D E, указать условие прозрачности. Указать необходимое условие прозрачности в случае поля рис. 5:

0 x< U x = -V1 0

9.6. Найти D E для частицы в поле прямоугольного потенциального барьера высотою V и шириною a (рис. 6), особо рассмотреть случай E

9.7. Рассмотреть рассеяние в поле U x = -G x. Обратить внимание на поведение амплитуд отраженной и прошедшей волн при продолжении решения в область E<0.

Рис. 5: Потенциальная энергия, соответствующая случаю просветленной оптики Рис. 6: Туннелирование частицы через одномерный прямоугольный барьер §10. Коммутаторы.

Снова соотношение неопределенностей.

Уравнение Эренфеста. Теорема о вириале Измеримость величин Если величины A и B одновременно измеримы, то существует полная система волновых функций n, таких, что n — одновременно ^ ^ собственная функция и A, и B. Но тогда ^ ^ ^ ^ ^ ^ ^ ^ AB = AB cn n = cnab n = cnBAn = BA, n n n то есть ^ ^ ^ ^ ^ ^ A, B AB - BA = 0.

^ ^ ^ ^ И обратно, если A, B = 0, то A и B могут иметь общую систему ^ собственных функций. Пусть a — собственная функция A:

^ Aa = aa, тогда ^ ^ ^ ^ ^ BAa = aBa = ABa, ^ ^ то есть Ba — тоже собственная функция A с собственным значе^ нием a. Если спектр невырожден, отсюда следует, что Ba с точ^ ностью до множителя совпадает с a, то есть Ba = ba, так что ^ a, действительно, является собственной функцией оператора B (с собственным значением b). В случае вырожденного спектра можно выбрать такие линейные комбинации ciai собственных функций i ^ оператора A, которые будут одновременно собственными функция^ ми B.

Рассмотрите также случай a = b = 0.

Соотношение неопределенностей Определим дисперсию A = A - A 2.

^ ^ ^ ^ ^ Пусть эрмитовы операторы A и B не коммутируют, A, B = iC и для ^ ^ простоты n|A|n = n|B|n = 0. Рассмотрим состояние ^ ^ |m = A +iB |n.

Ясно, что ^ ^ ^ ^ J = m|m = n| A - iB A +iB |n = ^ ^ ^ ^ ^ ^ n|2A2 +i AB - BA + B2|n = = 2 A2 - C + B2 0.

1 Отсюда следует, что A2 · B2 C. Таким образом, A · B | C |.

Квантовые скобки Пуассона ^ dA Оператор производной по времени, по определению, удовлетвоdt ряет условию ^ dA d ^ |A|.

dt dt Используя УШ, правую часть этого равенства можно переписать в виде ^ ^ d A A ^ ^ ^ ^ ^ |A| = A + + A = + AH.

Pages:     | 1 || 3 | 4 |   ...   | 11 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.