WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 29 | 30 || 32 | 33 |   ...   | 55 |

Созвездия изображены на флагах всего нескольких стран мира. Наиболее «богатая» россыпь представлена на флаге Бразилии, где изображено целое небесное полушарие. Созвездие Южный Крест включено в государственные флаги южных английских доминионов: Австралии и Новой Зеландии. По соседству ещё три государства имеют его на своём флаге: Папуа Новая Гвинея, Самоа и Микронезия. Наконец, интересно упомянуть и такое известное и красивое созвездие, как Большая Медведица; оно тоже поместилось на флаге, правда не совсем государства, а всего лишь одного из штатов США — Аляска.

Самых разнообразных «звёздочек» на флагах действительно очень много. Например, 1 звезду имеют следующие страны: Вьетнам, Израиль, Иордания, КНДР, Гана, Буркина-Фасо, Гвинея-Бисау, Джибути, Зимбабве, Камерун, Либерия, Марокко, Мозамбик, Сенегал, Сомали, Того, ЦАР, Эфиопия, Куба, Суринам, Чили, Маршалловы острова, Науру. Несколько звёзд поместились на флагах государств: Босния и Герцоговина, Словения, Ирак, Китай, Мьянма, Сирия, Таджикистан, Бурунди, Кабо-Верде, ДР Конго, Сан-Томе и Принсипи, Гондурас, Гренада, Доминика, Панама, Сент Китс Невис, США, Венесуэла, Соломоновы острова, Тувалу.

«Иная астрономическая символика» — это, конечно, прежде всего Солнце, которое можно увидеть на следующих флагах: Македония, Бангладеш, Индия, Казахстан, Киргизия, Лаос, Япония, Намибия, Нигер, Аргентина, Уругвай, Палау; а Солнце в компании со звёздами — на флаге Филиппин. На флагах некоторых стран изображён восход солнца: Малави, Антигуа и Барбуда, Карибати.

В странах мусульманского мира на государственных флагах традиционно присутствует полумесяц, как символ ислама. Причём наблюдаются и определённые особенности в его положении, например, он может быть изображён стоймя (Мальдивы), или наклонно (Пакистан), наконец, лёжа (Мавритания, Непал; но это уже скорее ложе Будды, чем символ ислама). Месяц на флагах присутствует и в компании со звёздами:

например, с одной (Турция, Азербайджан, Алжир, Тунис, Малайзия), или с несколькими, причём стоймя (Сингапур, Узбекистан).

Наверное жаль, что ни одно государство мира не поместило на свой флаг никаких изображений редких астрономических объектов, например, комет. Но зато эрудиты среди турломовцев не забыли упомянуть даже свастику — древнейший (более 5000 лет) символ Солнца и смены времён года, — символ, присутствовавший во всех индоевропейских культурах.

802. Леонардо да Винчи обнаружил, что если смотреть через тонкое отверстие (например, булавочное), поднесённое близко к глазу, то звёзды видны без обычных лучей. Почему так См. конец ответа на вопрос №114 (стр. 93).

810. Если к нашему Солнцу добавить ещё одно такое же (изнутри), что будет А ещё одно А ещё Прежде всего необходимо заметить, что данный вопрос предполагает мысленный эксперимент, поскольку любые реальные процессы взаимодействия звёзд с окружающей средой и друг с другом происходят, естественно, только с поверхности. Однако, здесь мы не будем касаться возмущений поверхностных слоёв звезды.

Главным параметром, определяющим все внешние характеристики звезды (температуру, цвет, светимость, радиус), является масса звезды.

Таким образом, смысл данного вопроса сводится к тем изменениям, которые влечёт за собой увеличение массы звезды, например нашего Солнца.

Солнце относится к «главной последовательности» звёзд, которые родились из протозвёздного газо-пылевого облака и внутри которых в условиях плазменной среды происходят термоядерные реакции превращения водорода в гелий. Звёзды, существующие на главной последовательности, находятся в первой, наиболее спокойной стадии своей эволюции, и их видимые параметры достаточно плавно изменяются при изменении их массы. В таблице приведены изменения поверхностной температуры, спектрального класса, радиуса, светимости и времени жизни (на главной последовательности) для звёзд с массами 1, 2, 3 и массы Солнца.

Масса, Темпе- Спектральный Радиус, Свети-, Время ед. ратура, класс / цвет ед. мость, ед. жизни, Солнца градусы K Солнца Солнца лет 1 5900 G5 / жёлтый 1 1 10 000 000 2 8200 A5 / желтоватый 1,7 14 600 000 3 12500 A0 / белёсый 2,4 54 200 000 4 14000 B8 / белый 3,0 120 100 000 Даже на этом примере хорошо видны основные зависимости: при увеличении массы несколько увеличивается радиус звезды, меняется её цвет от жёлтого к белому (а затем и до голубого), увеличивается температура её поверхности, и очень резко возрастает её светимость.

Более массивные звёзды при больших температурах активнее сжигают водород, ярче светят, но зато и меньше живут.

В дальнейшем массивные звёзды «распухают», увеличиваясь в размерах до красных гигантов, а затем взрываются, как сверхновые звёзды. Что касается нашего Солнца, то оно также покраснеет и раздуется в размерах примерно до орбиты Юпитера. Однако, это произойдёт очень не скоро, — примерно через 6 миллиардов лет.

Для нас, жителей Земли, любое увеличение массы Солнца приведёт к двум крайне неприятным последствиям. Во-первых, резко уменьшатся орбиты всех планет, и они станут ближе к Солнцу. А во-вторых, увеличение его яркости приведёт к катастрофическому увеличению температуры на поверхности планет, потере всех океанов и атмосферы, и невозможности продолжения жизни на Земле в её нынешних формах.

811. Все звёзды мы видим потому, что они очень горячие (поверхность Солнца — около 6000 К) и ярко светятся. Между тем, на звёздах обнаруживают различные химические элементы, и даже некоторые молекулы, по их тёмным спектральным линиям. Откуда возникают эти тёмные линии Могут ли в звезде атомы разных химических элементов иметь разные температуры Как известно, звёздами называют пространственно и физически обособленные космические объекты, светящиеся за счёт собственных внутренних источников энергии. Как правило, звёзды имеют массу в диапазоне от 0,1 до 100 масс Солнца (МС =1,989 · 1033 г). В данном вопросе рассматриваются т. н. «нормальные» звёзды. В отличие от сжимающихся протозвёзд или вырожденных состояний остывающих звёзд на поздних стадиях эволюции, «нормальные» звёзды светятся за счёт термоядерных реакций синтеза гелия из водорода.

Б часть всей массы видимой Вселенной в целом, и отдельольшую ных звёзд в частности, составляет водород (77,4 %) и гелий (20,8 %).

Все другие химические элементы (1,8 % по массе) встречаются в значительно меньших количествах; их миллионные доли по массе следующие:

6 7 8 10 11 12 13 14 16 18 20 24 25 26 C N O Ne Na Mg Al Si S Ar Ca Cr Mn Fe Ni 3800 930 8500 1500 40 740 66 810 460 110 72 19 15 1400 Пропущенные в таблице химические элементы Li, Be, B, F, P, Cl, K, Sc, Ti, V, Co и все последующие имеют обилие ещё меньше. В целом обилие химических элементов заметно снижается при увеличении их порядкового номера (т. е. при увеличении массы их ядра A от 1 до 100) в среднем в 1 000 000 000 раз.

Тем не менее, некоторые звёзды проявляют удивительные особенности своего состава. В атмосферах ряда звёзд обнаружены атомы технеция (Tc), который нестабилен, или бария (Ba). Это может объясняться тем, что на поздних стадиях эволюции звёзд они более активно перемешиваются, и на поверхность выходят продукты ядерных реакций из выгоревшего ядра. В составе тесных двойных систем наблюдаются звёзды с повышенным содержанием металлов, т. н. «металлические» звёзды (класс Am). В звёздах класса С («углеродные» звёзды) обнаружено повышенное содержание тяжёлого изотопа С, относительное содержание которого достигает 0,25 при нормальном обилии около 0,01.

Подобное «обогащение» возможно в зоне протекания ядерных реакций углеродного цикла.

Наиболее загадочной для ядерной астрофизики является звезда 3 Cen A. Она содержит гелий в количестве всего 2,3 % от водорода, причём на 84 % это редкий изотоп He. На этой звезде фосфора в раз выше нормы, галлия — в 8000 раз, криптона — в 1300 раз, но зато кислорода меньше нормы в 6 раз.

Разумеется, вещество звёзд недоступно для непосредственного изучения, за исключением межпланетного солнечного ветра. Единственным способом определения их свойств является изобретённый И. Ньютоном спектральный анализ, т. е. разложение приходящего электромагнитного излучения в спектр в зависимости от длины волны и измерение его интенсивности. Атомы любого химического элемента, находясь в свободном состоянии, имеют строго определённую структуру электронных оболочек (энергетических уровней) вокруг ядра, поэтому электроны, переходящие с одного уровня на другой, излучают (или поглощают) кванты света также со строго определённой длиной волны.

В спектре эти кванты будут проявляться на данной длине волны в виде увеличения яркости (линии излучения), либо, если атомы поглощают свет — в виде тёмных линий поглощения. Измеряя положение, интенсивность, ширину и форму спектральных линий, можно не только установить наличие определённых атомов или молекул на данном объекте, но и определить скорость движения объекта, его температуру, химический состав, и даже его вращение и величину магнитного поля. Не будет преувеличением сказать, что абсолютное большинство наших современных знаний об астрономических объектах мы имеем только благодаря изобретениюспектрального анализа.

Как справедливо замечали некоторые участники Турнира, отдельный атом может иметь определённую скорость, т. е. кинетическую энергию, но понятие температуры по отношению к одному атому не имеет смысла. Температурой может характеризоваться только статически значимый ансамбль частиц, т. е. температуру может иметь определённое тело (или часть тела), и температура есть мера кинетической энергии атомов этого тела. По мере увеличения плотности вещества в звезде, атомы чаще сталкиваются друг с другом, обмениваются энергией и при этом температура выравнивается. При достаточно плотном состоянии вещество находится в условиях, как говорят, локального термодинамического равновесия. Поэтому понятно, что атомы даже разных химических элементов не могут характеризоваться разными температурами (специальные случаи, называемые неравновесными состояниями, мы сейчас рассматривать не будем).

На видимой поверхности Солнца, в т. н. фотосфере плотность частиц достигает 1017 в 1 см3, температура около 6000 К, давление — 0,1 атм. Вещество Солнца представляет из себя частично ионизованную плазму — смесь нейтрального водорода, ионизованных атомов металлов и свободных электронов. В этих условиях взаимодействие атомов и искажения их внешних электронных оболочек становятся настолько сильными, что спектральные линии уж размываются, кванты света е многократно поглощаются и вновь переизлучаются, а само вещество становится за счёт этого непрозрачным. Толщина фотосферы, излучающей весь видимый свет Солнца, очень мала — всего около 180 км, т. е. 1/3000 часть солнечного радиуса. При этом фотосфера светит не в спектральных линиях, как отдельные атомы, а за счёт многократных обменов квантами света — как единое нагретое тело. Такое излучение в физике называется излучением абсолютно чёрного тела.

Нетрудно понять, что поскольку все звёзды являются не твёрдыми телами, а газовыми (плазменными) шарами, то для обеспечения их устойчивости температура должна существенно увеличиваться с глубиной. Действительно, в центральной части Солнца, где идут термоядерные реакции, температура достигает 15 млн. градусов, а плотность вещества в 150 раз выше плотности воды. На половине радиуса Солнца температура 3 000 000 К, на радиусе 0,98 — уже 10 000 К. После фотосферы, где кванты света уже могут двигаться относительно свободно, температура уменьшается дальше и на высоте около 500 км достигает своего минимального значения около 4200 К.

В этой области, называемой хромосферой Солнца, свободные атомы могут поглощать часть идущего снизу излучения в своих спектральных линиях, а затем переизлучать их во всех направлениях. За счёт этого механизма атомного рассеяния в спектре Солнца (и других звёзд) образуются тёмные линии. Впервые в 1814 г. австрийский физик Йозеф фон Фраунгофер наблюдал около 500 таких тёмных линий. Сейчас известны десятки тысяч фраунгоферовых линий. Наиболее сильные из них излучаются ионами H(I), Mg(I), Na(I), Fe(I), Ca(II) (H+, Mg+, Na+, Fe+, Ca2+) и др.

В солнечных пятнах (которые также являются областями с пониженной температурой) наблюдаются линии молекул, например: OH, NH, CH, CN, CO, MgH, O2, C2, TiO и др. В атмосферах звёзд более поздних классов, у которых температура поверхности опускается до 2000–3000 К, молекулы весьма многочисленны и разнообразны. Поэтому звезды класса М часто называют «кислородными», а класса R и N — «углеродными» звёздами. Во внешних слоях относительно холодных углеродных звёзд могут встречаться даже многоатомные органические молекулы (HCN, C3N, HC3N, CH4) и углерод в виде угольной сажи. Можно даже сказать, что такие звезды сильно «коптят».

812. Все звёзды очень разнообразные: бывают красные и голубые гиганты, жёлтые и коричневые карлики, и всякие другие.

Отчего это зависит Как известно, любая звезда (по крайней мере те, что находятся на «главной последовательности», и гиганты), представляет собой раскалённый газовый шар. Точнее говоря, звезда — это плазменный шар, поскольку все атомы в звёздах находятся в той или иной степени ионизации. В недрах звёзд идут термоядерные реакции превращения ядер водорода в ядра гелия, и при этом высвобождается энергия около 6 Мэв/нуклон. Силы гравитации стремятся сжать всё вещество звезды в точку, а термодинамическое давление горячей плазмы и световое давление поднимающегося излучения удерживают звезду в равновесии.

При этом все видимые параметры звезды (её температура, радиус, светимость, цвет) определяются по сути одним параметром, — массой того вещества из первоначального газо-пылевого облака, которая, собравшись в один объём, образовала даннуюзвезду. Массы звёзд могут варьироваться от 0,01 до 100 масс Солнца, и при этом естественно, что маленькие и большие звёзды будут очень разными.

Масса звезды определяет не только её размер, что можно интуитивно ожидать (чем массивнее звезда, тем её радиус больше), но также и температуру и давление в центре звезды, а соответственно и скорость термоядерных реакций в ней. Поэтому более массивные звёзды горячее, они ярче светят, но зато и быстрее расходуют свои запасы «топлива».

Пример зависимости параметров звезды от её массы приведён в таблице (все параметры в единицах Солнца, температура в градусах, время жизни — в годах):

Масса Радиус Темпера- Цвет Свети- Время жизни, тура, К мость лет 0,1 0,11 2600 Тёмно-красный 0,001 1 000 000 000 0,8 0,85 5200 Жёлтый 0,4 150 000 000 7 3,9 15400 Белый 830 30 000 60 14 44000 Голубой 790000 3 000 Из таблицы видно, в частности, как резко с увеличением массы увеличивается светимость звёзд и падает их время жизни.

813. Бывают ли зелёные, сиреневые, или, например, пятнистополосатые звёзды Ограничения на возможные цвета звёзд требуют некоторого пояснения.

Pages:     | 1 |   ...   | 29 | 30 || 32 | 33 |   ...   | 55 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.