WWW.DISSERS.RU


...
    !


Pages:     || 2 | 3 | 4 | 5 |   ...   | 24 |
.. , .. x( k +1) = [ x( k), u( k)], y(k) = [ x(k), u(k)] - 2005 - - , 197101, -, ., 49 - , .. , .. - 2005 [517.938 + 519.713 /.718]: 621.398 .., .. / . . . . .: , 2005. 220., . 40.

, .

() , , (), , (), (). . , - , ().

, , 05.13.05. , , 6519.00- 2101.00- .

ISBN - , , 2005.

. . , . . , 2005.

197101, -, . 49, - , , e-mail: ushakov_AV@mail.ru, amndrey@newmail.ru CONTENTS... Ņ.. 1. () ȅ 1.1. () х.. 1.2. - , 셅.. 1.3. х..... 1.3.1. 腅 1.3.2. х... 1.4. х.. 1.4.1. ⅅ 1.4.2. ⅅ 1.5. - , 셅.. 1.5.1. 腅 1.5.2. 1.5.3. 酅.. 1.6. х... 1.6.1. . 1.6.2. х.. 1.7. 2. () ȅ.. 2.1. ....



2.2. ⅅ.. 2.3. ⅅ. 2.4. 酅. 2.5. 3. () ȅ.. 3.1. х... 3.2. 셅 3.3. 3.4. - 酅 3.5. - Ņ.. D- ... .. 腅 BINARY DYNAMIC SYSTEMS OF DISCRET AUTOMATION Editor Doctor of Technical Sciences Professor A. V. Ushakov CONTENTS. Table of Abbreviations and Symbols... INTRODUCTION... 1. LINEAR BINARY DYNAMIC SYSTEMS (LBDS) OF DISCRETE AUTOMATION...... 1.1. Transfer Function (Matrix) Approach in Problem of LBDS Model Representation. 1.2. Vector-Matrix LBDS Model Representation Parameterized by Discrete Time..... 1.3. The Problem of Dimension Reduction of LBDS Model Repre- sentation...... 1.3.1. Reduction of Dimension of LBDS by Means of Numera- tor and Denominator Modular Polynomials of Transfer Function Divisibility 1.3.2. Reduction of Dimension of LBDS by Means of Analysis of Controllability and Observability Space of LBDS.. 1.4. The Similarity Conception in Theory of Linear Binary Dynamic Systems 1.4.1. The Similarity Conception in Systematic Noise-Immune Codes Decode Task. 1.4.2. The Similarity Conception in Task of Binary Dynamic Systems Synthesis Within Arbitrary Flip-Flop Logic. 1.5. Vector-Matrix Model Representation of Linear Noise- Immunity Encoding not parameterized by Discrete Time.. 1.5.1. Design of Noise-Immune Codes Matrices by Means of Check Equations Within Coding and Decoding Processes 1.5.2. Design of Noise-Immune Codes Matrices by Means of Sylvester Matrix Equation.. 1.5.3. Design of Noise-Immune Codes of Full-Block Systematization. 1.6. The Analysis of Structure of LBDS Motionless States and Closed Loops.. 1.6.1. Motionless States of LBDS. 1.6.2. Closed Loops of LBDS 1.7. LBDS in Tasks of Dividing Noise-Immunity Code Transfor- mation.. 2. NONLINEAR BINARY DYNAMIC SYSTEMS (NBDS) OF DISCRETE AUTOMATION...... 2.1. The Construction of NBDS Model Representation by Means of Finite-State Machine Logic. 2.2. The Construction of Dividing Devices Noise-Immunity Code Transformation by Means of NBDS in the Arbitrary Flip-Flops Logic... 2.3. NBDS in Tasks of Noise-Immunity Codes Errors Correction. 2.4. The Dividing Encoding and Decoding Devices of Shortened Cyclical Codes with Switching Structure.. 2.5. Sellers Differentiation Approach in Boolean Description Analysis Tasks of NBDS of Discrete Automation . 3. THE HYBRID BINARY DYNAMIC SYSTEMS (HBDS) OF DISCRETE AUTOMATION...... 3.1. The Problem of Code Space infilling with a Hybrid Binary Dynamic Systems Set.. 3.2. The Request Factor of Boolean Variables of Binary Dynamic Systems Description 3.3. The Use of the Request Factor of State Codes Boolean Vari- ables of NBDS for EFFICIENT Employment of Noise Immu- nity Resource.. 3.4. The Design of Equivalent Linear Vector-Matrix Model Repre- sentation of NBDS Based on Boolean Description Variables Aggregation Approach 3.5. The Problem of Apparatus Space Time Expense Exchange in Tasks of Noise-Immunity Code Transformation CONCLUSION..





APPLICATION D Transformation and its Properties REFERENCES.. Subject index. Remote Control Laboratory. Brief Historical Review... - - - - - - A ;

;

;

. ;

;

;

;

;

;

, , ;

, , , , , , ;

A,Ai,A , i - , j - A ;

j col{i,i =1,n} i ;

D{( )(k)} D- ( ) ;

E{()} () ;

F (d) = D{ f (k)} D- f (k);

-f (k) =D { f (d)} D- f (k);

GF( p)={0,1,2,..., p -1}, p N ;

GF(pn), p,n N ;

k ( k = 0,1,2, ), t ;

row{i,i =1,n} i ;

u(k) ;

x(k) ;

x(k + 1) ;

y(k) ;

& Ȼ ;

Ȼ .

, .

, () (), . (), , XX . - () .

Pages:     || 2 | 3 | 4 | 5 |   ...   | 24 |





2011 www.dissers.ru -

, .
, , , , 1-2 .