WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 | 3 | 4 | 5 |
Управление образования администрации г. Владимира Муниципальное образовательное учреждение дополнительного профессионального образования (повышения квалификации) специалистов – городской информационно-методический центр Задания для подготовки к О Л И М П И А Д А М.

МАТЕМАТИКА Владимир 2010 ББК 22.1 Научный рецензент Рогачева Е.Ю., профессор кафедры педагогики ВГГУ, д.п.н., научный консультант Городского информационно-методического центра Рецензент Антонова Е.И., к.п.н., заведующая кабинетом естественноматематического и географического образования ВИПКРО Всероссийская Олимпиада школьников по математике.

Школьный и муниципальный этапы (2005-2009 г.г). / Составитель:

А.И. Казнина. Рецензент: Е.И. Антонова. - Владимир: Городской информационно-методический центр, 2010. – С..

2 На титул:

Данный сборник содержит Положение и методические рекомендации об организации проведения школьного и муниципального этапов Всероссийской Олимпиады школьников по математике. Сборник предназначен для учителей математики и учащихся 6-11 классов. В сборнике представлены задания муниципального этапа Всероссийской Олимпиады школьников по математике за 2005 – 2009 гг. Ко всем заданиям даны ответы, указания к решению и полностью решения к наиболее трудным.

Сборник заданий муниципального этапа Олимпиады по математике содержит Положение и методические рекомендации по организации проведения школьного и муниципального этапов Всероссийской Олимпиады школьников, тексты Олимпиадных заданий муниципального этапа за последние 5 лет, ответы и указания к решению.

Методические материалы содержат рекомендации по порядку проведения Олимпиад по математике, требования к структуре и содержанию Олимпиадных задач, рекомендуемые источники информации для подготовки заданий, а также рекомендации по оцениванию решений участников Олимпиад.

Методические рекомендации для школьного и муниципального этапов Всероссийской Олимпиады школьников по математике в 2009/утверждены на заседании Центральной предметно-методической комиссии по математике (протокол № 2 от 09 июля 2009).

В брошюре содержатся задачи олимпиад по математики, проходивших в городе с 2005 по 2009 года. Задачи снабжены подробными решениями к наиболее трудным.

В книге приведены классические олимпиадные задачи, разбитые по основным темам олимпиадной математики. Предназначена для учителей математики, руководителей кружков, факультативов, школьников, рекомендуется для подготовки к олимпиадам начальных уровней.

Компоновка заданий, начинающихся с простых задач со школьной формулировкой и заканчивающихся 1-2 достаточно сложными задачами.

Авторы сборника стремились к его максимальной доступности.

Пособие предназначено выпускникам и абитуриентам, поступающим в ВУЗы, где предъявляются достаточно высокие требования к математической подготовке; учащимся 7-11 классов, желающим участвовать и побеждать на олимпиадах различного уровня, а также преподавателям подготовительных отделений ВУЗов, учителям математики, студентам педвузов и репетиторам.

Решение задач требует сообразительности, хорошего владения некоторыми разделами элементарной математики, психологической подготовки и высокой логической культуры.

Математические олимпиады школьников:

проблемы и перспективы развития В нашей области ежегодно проводятся школьный, муниципальный и региональный этапы Всероссийской олимпиады школьников, что способствует выявлению одаренных учащихся, имеющих интерес и склонности к тем или иным предметным дисциплинам. Изначально проведение предметных олимпиад имело целью развить интерес учащихся к школьным дисциплинам. В настоящее время, роль предметных олимпиад возросла в связи с введением ЕГЭ и новыми правилами поступления в вузы.

Успешно выступившие на олимпиадах школьники имеют преимущества при поступлении в престижные вузы страны и своего региона – а это в свою очередь повышает статус всего олимпиадного движения.

Олимпиадные испытания охватывают широкий круг учебных предметов, в том числе и предмет математику. За годы существования математические олимпиады стали самыми массовыми творческими соревнованиями школьников. Они проводятся практически во всех странах мира, а в Международной математической олимпиаде школьников, которая берет свое начало в середине прошлого столетия, ежегодно принимают участие более стран, и эта цифра постоянно растет.

В математических олимпиадах основой успеха является не сумма конкретных знаний учащегося, а его способность логически мыслить, умение создать за короткий срок достаточно сложную и, главное, новую для него логическую конструкцию. Недаром только в математических олимпиадах задание может начинаться со слов: «Докажите, что…». Решая задачу выявления творческих способностей учащегося, т.е. умения «нестандартно мыслить», олимпиадная математика в значительной степени отошла от стандартной («школьной») математики. Хотя промежуточное звено между «школьной» и «олимпиадной» математикой – так называемые задачи повышенной трудности и занимательные задачи – всегда включались в школьные учебники по математике. Они помогают учителю в работе со способными учениками, в поддержке у них интереса к предмету.

Олимпиадная задача по математике – это задача повышенной трудности, нестандартная как по формулировке, так и по методам решения.

Геометрические задачи вызывают наибольшие трудности у учеников. При этом можно утверждать, что как раз геометрия лучше всего развивает нестандартное мышление и помогает выделить математически одаренных школьников.

Однако, для успешного участия в олимпиадах необходимо выполнение следующих условий:

систематическое проведение внеклассной работы по предмету;

обеспечение регулярности проведения всех этапов олимпиад;

серьезная, содержательная и интересная подготовительная работа перед проведением каждого этапа олимпиад;

хорошая организация проведения олимпиад;

интересное предметное содержание соревнований.

Проведение олимпиад и всей внеклассной работы по предмету является прекрасным средством повышения деловой квалификации учителей. Чтобы подготовить учащихся к участию в олимпиадах и проводить олимпиады, учителю необходимо вести кружки, факультативы; проводить большую подготовительную работу; подбирать и выполнять различные задачи и задания олимпиадного типа, детально знакомиться с различными вопросами математики, с новинками математической литературы. Подбор материала для кружковых занятий и для олимпиад, подготовка к проведению этих мероприятий являются одной из форм активной работы учителя по повышению своей научно-методической квалификации. Руководитель кружка тщательно продумывает методику работы над каждой задачей, предлагаемой им ученикам. На занятиях кружка приходится несколько расширять изучаемый в классе материал курса математики, который иногда выходит за рамки школьной программы. Все это приводит учителя к необходимости основательного знакомства с материалами прошедших олимпиад, с методикой его изложения и оценивания.

Данные материалы сборника подготовлены для проведения муниципального этапа олимпиады школьников по математике в г.

Владимире. Они составлены в соответствии с методическими рекомендациями по разработке заданий для школьного и муниципального этапов Всероссийской олимпиады школьников по математике, подготовленными Центральным оргкомитетом Всероссийской олимпиады школьников и опубликованными на сайте Всероссийская олимпиада школьников (http://www.rusolimp.ru).

Е.И. Антонова, заведующая кафедрой естественно-математического образования ВИПКРО Итоги муниципального этапа Всероссийской Олимпиады школьников 2009 года по математике В городской математической Олимпиаде принимали участие учащихся 7 – 11классов г. Владимира, из них 145 учащихся 7-9 классов и учащихся 10-11 классов.

Профиль класса, в котором обучаются участники Олимпиады 10-классов:

общеобразовательный – 45% физико-математический – 37% другие (естественно-научный, экономический и т.д.) – 18%.

Муниципальный этап Олимпиады проводился по Олимпиадным заданиям, разработанным предметно-методической комиссией регионального этапа Олимпиады, с учтом методических рекомендаций центральных предметнометодических комиссий Олимпиады. Учащимся были предложены задания, проверяющие степень информированности школьников в предметной области; задания, направленные на определение уровня интеллектуального развития; творческие задания.

Наибольшие затруднения вызвали геометрические и нестандартные задания. Основной трудностью учащихся является неумение пользоваться анализом для поиска решения, использование эвристических методов, комбинирование известных способов решения. Низкие результаты в общеобразовательных классах объясняются отсутствием факультативов и недостаточной индивидуальной работой с учащимися.

Основные выводы Учащиеся 7 класса показали неумение обосновать свое решение, неумение понять условие задач повышенного уровня, незнание приемов решения логических задач.

Учащиеся 8 класса показали неумение приводить логическое обоснование к своему решению. Допустили много ошибок в определении модуля, при построении графика функции.

Учащиеся 9 класса показали слабую подготовку по теме «Подобие треугольников». Допускали ошибки в ходе тождественных преобразований.

Учащиеся 10 классов показали слабую подготовку по теме «Арифметическая прогрессия». Допускали ошибки при решении геометрической задачи, тригонометрического неравенства, в определении модуля.

При подготовке учащихся 11 классов больше внимания уделять решению комбинаторных задач, использованию признаков делимости при решении нестандартных задач.

Анализ результатов по классам отношение средний кол-во среднего балла кол-во балл класс баллов к максимальному участников призера 2008 2009 2008 год год год год 7 42 35 15,5 12 44% 34% 8 54 30 11,6 9 33% 30% 9 49 34 4 12 13,3% 35% 10 44 34 9,9 12 28% 35% 11 40 33 12 14 34% 35% Анализируя результаты по классам, видим, что средний балл в 9-классах увеличился, в 7-8 классах снизился по сравнению с прошлым годом.

Это объясняется тем, что уровень заданий для учащихся в 7-8 классов стал более высоким.

Отношение среднего балла к максимальному в 9-10 классах значительно увеличилось; в 11 классе стабильное, но по сравнению с 2005 годом увеличилось в 2 раза. Все это говорит о более серьезной подготовительной работе к математической Олимпиаде.

В основном, призерами муниципального этапа Всероссийской Олимпиады являются учащиеся профильных классов, где математика изучается в большем объеме. При этом акцент в организации учебных занятий переносится на освоение способов учебной деятельности, умение осуществлять поиск способа решения задачи, формирование умения оперировать усвоенными знаниями и умениями в новой ситуации.

ПОЛОЖЕНИЕ об организации проведения школьного, муниципального, регионального этапов всероссийской Олимпиады школьников Общие положения 1. Настоящее Положение об организации проведения школьного, муниципального, регионального этапов всероссийской Олимпиады школьников (далее – Олимпиада) составлено на основании Положения о всероссийской Олимпиады школьников, утвержднного приказом Минобрнауки России от 22 октября 2007 г. № 286.

2. Основными целями и задачами школьного, муниципального и регионального этапов Олимпиады являются выявление и развитие у обучающихся творческих способностей и интереса к научноисследовательской деятельности, создание необходимых условий для поддержки одаренных детей, пропаганда научных знаний.

3. В Олимпиаде принимают участие на добровольной основе обучающиеся государственных, муниципальных и негосударственных образовательных организаций, реализующих общеобразовательные программы.

4. Организаторами этапов Олимпиады являются:

школьный этап – образовательные организации (далее – организатор школьного этапа Олимпиады);

муниципальный этап – органы местного самоуправления муниципальных и городских округов в сфере образования (далее – организатор муниципального этапа Олимпиады);

региональный этап – департамент образования администрации Владимирской области (далее – организатор регионального этапа Олимпиады).

5. Олимпиада проводится по общеобразовательным предметам, перечень которых утверждается Министерством образования и науки Российской Федерации.

6. Этапы Олимпиады проводятся по заданиям, составленным на основе общеобразовательных программ, реализуемых на ступенях основного общего и среднего (полного) общего образования (далее – Олимпиадные задания).

7. Квоты на участие в каждом этапе Олимпиады определяются организатором соответствующего этапа Олимпиады. Квоты на участие в школьном этапе Олимпиады не устанавливаются.

8. Победители и призры всех этапов Олимпиады определяются на основании результатов участников соответствующих этапов Олимпиады, которые заносятся в итоговую таблицу результатов участников соответствующих этапов Олимпиады, представляющую собой ранжированный список участников, расположенных по мере убывания набранными ими баллов (далее – итоговая таблица). Участники с равным количеством баллов располагаются в алфавитном порядке.

9. Образцы дипломов победителей и призров для всех этапов Олимпиады утверждаются Минобрнауки России.

10. Общее руководство проведением школьного, муниципального и регионального этапов Олимпиады и е организационное обеспечение осуществляют оргкомитеты соответствующих этапов.

11. Проверку выполненных Олимпиадных заданий школьного, муниципального, регионального этапов Олимпиады осуществляют жюри соответствующих этапов Олимпиады.

12. Состав жюри формируется, как правило, из числа научных и педагогических работников, аспирантов и студентов образовательных организаций высшего профессионального образования.

13. Жюри школьного, муниципального и регионального этапов Олимпиады:

оценивает выполненные Олимпиадные задания;

проводит анализ выполненных Олимпиадных заданий;

рассматривает совместно с оргкомитетом соответствующего этапа Олимпиады апелляции;

представляет в оргкомитеты соответствующих этапов Олимпиады аналитические отчты о результатах проведения соответствующих этапов Олимпиады.

Порядок проведения школьного этапа Олимпиады 1. Школьный этап Олимпиады проводится организатором данного этапа Олимпиады в октябре. Конкретные даты проведения школьного этапа Олимпиады устанавливаются организатором муниципального этапа Олимпиады.

2. Для проведения школьного этапа Олимпиады организатором данного этапа Олимпиады создаются оргкомитет и жюри школьного этапа Олимпиады.

Pages:     || 2 | 3 | 4 | 5 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.