WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 13 |

Определим информированность игроков и порядок функционирования2. Будем считать, что на момент принятия решения (выбора стратегии) участникам ОС известны все целевые функции и все допустимые множества. Специфика теоретико-игровой задачи стимулирования заключается в том, что в ней фиксирован порядок ходов (игра Г2 в терминологии теории иерархических игр [25, 46]).

Центр - метаигрок - обладает правом первого хода, сообщая агенту выбранную им функцию стимулирования, после чего при известной стратегии центра агент выбирает свое действие, максимизирующее его целевую функцию.

В экономике предельными затратами принято называть производную функции затрат.

Информированностью игрока называется та информация, которой он обладает на момент принятия решений. Порядком функционирования называется последовательность получения информации и выбора стратегий участниками организационной системы.

Пример 1. В качестве примера рассмотрим упрощенную модель трудового контракта, заключаемого между работником (агентом) и некоторой организацией (центром) и являющегося, как правило, документом1, в котором отражено следующее: центр обязуется обеспечить условия работы и выплатить вознаграждение, прямо или косвенно зависящее от результатов деятельности (действий) агента. Помимо этого в контракте оговариваются права и обязанности работника, в том числе – выбор каких действий он может и обязуется производить и т.д.

Таким образом, стратегией центра является выбор системы стимулирования, стратегией агента – выбор действия. Условия контракта (его содержание) известны обеим сторонам. Информированность участников следующая. На момент принятия решений (о том какую систему стимулирования ему следует установить для того или иного работника) центр имеет определенную информацию о том, какие действия этот работник может выбирать (множество его допустимых – возможных – действий) и о предпочтениях работника (его целевой функции) на этом множестве. Помимо этого центру, естественно, известны свои собственные предпочтения и ограничения на множество допустимых функций стимулирования. Агент на момент принятия решения (о том какое действие ему следует выбрать) знает свои предпочтения и множество своих возможных действий, а также выбранную центром систему стимулирования, то есть функциональную зависимость вознаграждения от действий. Порядок функционирования следующий: заключается контракт, затем работник выбирает свое действие, после чего производятся выплаты. •Так как значение целевой функции агента зависит как от его собственной стратегии – действия, так и от функции стимулирования, то в рамках принятой гипотезы рационального поведения агент будет выбирать действия, которые при заданной системе стимулирования максимизируют его целевую функцию. Понятно, что множество таких действий, называемое множеством реализуемых действий, зависит от используемой центром системы стиму Отметим, что различают явные и неявные контракты [11, 67, 114].

Символом « » здесь и далее обозначается окончание примера, доказательства и т.д.

лирования. Основная идея стимулирования как раз и заключается в том, что, варьируя систему стимулирования, центр может побуждать агента выбирать те или иные действия.

Так как целевая функция центра зависит от действия, выбираемого агентом, то эффективностью системы стимулирования называется (максимальное или минимальное) значение целевой функции центра на множестве действий агента, реализуемых данной системой стимулирования. Следовательно, задача стимулирования заключается в том, чтобы выбрать оптимальную систему стимулирования, то есть систему стимулирования, имеющую максимальную эффективность. Приведем формальные определения.

Множество действий агента, доставляющих максимум его целевой функции (и, естественно, зависящее от функции стимулирования), называется множеством решений игры или множеством действий, реализуемых данной системой стимулирования:

(4) P( ) = Arg max { (y) - c(y)}.

yA Зная, что агент выбирает действия из множества (4), центр должен найти систему стимулирования, которая максимизировала бы его собственную целевую функцию. Так как множество P( ) может содержать более одной точки, необходимо доопределить (с точки зрения предположений центра о поведении агента) выбор агента. Если выполнена гипотеза благожелательности1 (ГБ), которую мы будем считать имеющей место, если не оговорено особо, в ходе дальнейшего изложения, то агент выбирает из множества (4) наиболее благоприятное для центра действие. Альтернативой для центра является расчет на наихудший для него выбор агента из множества решений игры.

Гипотеза благожелательности заключается в следующем: если агент безразличен между выбором нескольких действий (например, действий, на которых достигается глобальный максимум его целевой функции), то он выбирает из этих действий то действие, которое наиболее благоприятно для центра, то есть действие, доставляющее максимум целевой функции центра [14, 71, 72].

Соответственно, различают эффективность системы стимулирования M:

(5) K( ) = max (y) yP( ) и ее гарантированную эффективность (6) Kg( ) = min (y), yP( ) где (y) определяется либо (2), либо (3) (соответственно, задачи стимулирования первого и второго рода [72]).

Прямая задача синтеза оптимальной системы стимулирования заключается в выборе допустимой системы стимулирования, имеющей максимальную эффективность (или максимальную гарантированную эффективность):

(7) K( ) max ;

M (8) Kg( ) max.

M Отметим, что решения задач (7) и (8) в общем случае не совпадают (см. подробности в [46, 72]).

Обратная задача стимулирования заключается в поиске множества систем стимулирования, реализующих заданное действие, или в более общем случае - заданное множество действий A* A.

Например, в рамках предположения А.3' при A* = {y*} обратная задача может заключаться в поиске множества M(y*) систем стимулирования, реализующих это действие, то есть M(y*) = { M | y* P( )}. Определив M(y*), центр имеет возможность найти в этом множестве "минимальную" систему стимулирования, то есть реализующую заданное действие с минимальными затратами на стимулирование, или систему стимулирования, обладающую какими-либо другими заданными свойствами, например - монотонность, линейность и т.д.

Следует отметить, что введенные выше предположения согласованы в следующем смысле. Агент всегда может выбрать нулевое действие, не требующее от него затрат (предположение А.2') и приносящее нулевой доход центру (предположение А.4). В то же время, центр имеет возможность ничего не платить ему за выбор этого действия (см. предположение А.3).

Во всех содержательных интерпретациях теоретико-игровых моделей стимулирования (см. обзор [11] по теории контрактов и [107, 134]) предполагается, что у агента имеется альтернатива сохранить статус-кво, то есть не вступать во взаимоотношения с центром (не заключать трудового контракта). Отказываясь от участия в данной ОС, агент не получает вознаграждения от центра и всегда имеет возможность выбрать нулевое действие, обеспечив себе неотрицательное (точнее - нулевое) значение целевой функции.

Если вне данной ОС агент может гарантированно получить полезность U 0 (ограничение пособия по безработице или ограничение резервной заработной платы в терминологии теории контрактов [11, 127, 131]), то и при участии в данной ОС ему должен быть гарантирован не меньший уровень полезности.

Сделав маленькое отступление, обсудим более подробно модель процесса принятия решений агентом. Предположим, что некоторый агент предполагает устроиться на работу на некоторое предприятие. Ему предлагается контракт { (y), y*}, в котором оговаривается зависимость ( ( )) вознаграждения от результатов его деятельности (y), а также то, какие конкретные результаты от него ожидаются (y*). При каких условиях агент подпишет контракт, если обе стороны – и агент, и предприятие (центр) принимают решение о подписании контракта самостоятельно и добровольно Рассмотрим сначала принципы, которыми может руководствоваться агент.

Первое условие – условие согласованности стимулирования, которое заключается в том, что при участии в контракте выбор именно действия y* (а не какого-либо другого допустимого действия) доставляет максимум его целевой функции (функции полезности). Другими словами, это – условие того, что система стимулирования согласована с интересами и предпочтениями агента.

Второе условие – условие участия в контракте (иногда его называют условием индивидуальной рациональности), которое заключается в том, что, заключая данный контракт, агент ожидает получить полезность, большую, чем он мог бы получить, заключив другой контракт на другом предприятии (с другим центром). Представления агента о своих возможных доходах на рынке труда отражает такая величина как резервная заработная плата. Остановимся на ее рассмотрении более подробно.

Предположим, что агент (безработный или собирающийся сменить работу) имеет свои субъективные1 представления о распределении предлагаемой на рынке труда заработной платы (или ставки заработной платы2) [96, 113, 137]. Обозначим плотность этого распределения вероятности p( ), k* - уровень квалификации данного агента. Гипотетическая кривая распределения приведена на рисунке 1.

Понятно, что в среднем более высокой квалификации соответствует более высокая оплата. Если бы агент обладал полной ин* формацией о требованиях (k) к квалификации, предъявляемых на рынке труда для получения соответствующей заработной платы, и если бы достоверная информация о его квалификации k* была полностью доступна всем потенциальным работодателям (центрам), то он был бы, фактически, лишен выбора и соглашался бы на существующий однозначный рыночный уровень заработной * платы (k*), соответствующий его квалификации. Вся проблема заключается в том, что информация о рыке труда несовершенна, то есть и агент, и центр действуют в условиях неполной информированности3.

Необходимо помнить, что рассматривается модель поиска работы некоторым конкретным агентом. Поведение других агентов в тех же условиях может отличаться в силу различий их индивидуальных характеристик.

Ставка заработной платы при повременной оплате труда соответствует вознаграждению за единицу времени (час, день, месяц и т.д.). Заработная плата в этом случае определяется произведением ставки оплаты на продолжительность отработанного времени.

Информированность субъектов экономики является важнейшей характеристикой, определяющей как их индивидуальное поведение, так и эффективность функционирования той социально-экономической системы, элементами которой они являются. Изучению роли информированности и неопределенности в экономических и экономикоматематических моделях посвящено значительное число исследований.

Интересующие нас в настоящей работе проявления фактора информированности обсуждаются ниже при рассмотрении соответствующих p( ) * * E (k*) (k ) U (k*) Рис. 1. Резервная, ожидаемая и максимальная заработная плата Предположим, что агент имеет свои субъективные представления о минимальном уровне заработной платы U (k*), за которую он согласен работать при данной его квалификации. Величина U (k*) называется резервной заработной платой. Тогда процесс поиска работы можно представить себе следующим образом:

получая информацию о предлагаемых условиях работы и ее оплаты, агент соглашается с первым предложением, превышающим его резервную заработную плату (в случае смены работы в качестве резервной заработной платы может выступать, например, величина зарплаты на старом месте работы или величина пособия по безработице и т.д.).

* Так как получение заработной платы, большей (k*), для дан* ного агента невозможно (поэтому величину (k*) иногда называют максимальной заработной платой), то ожидаемая заработная * (k*) плата будет равна следующей величине: E (k*) = p( ) d.

U (k* ) Более подробное обсуждение свойств резервной заработной платы и моделей поиска работы можно найти в [119, 120, 137].

моделей. Более полную информацию по этому вопросу можно найти в [45, 61, 69].

Вернемся к анализу условий взаимовыгодности заключения трудового контракта.

Аналогичные приведенным выше для агента, условия согласованности и индивидуальной рациональности можно сформулировать и для центра. Если имеется единственный агент – претендент на заключение контракта, то контракт будет выгоден для центра, если выполнены два условия.

Первое условие (аналогичное условию согласованности стимулирования) отражает согласованность системы стимулирования с интересами и предпочтениями центра, то есть применение именно фигурирующей в контракте системы стимулирования должно доставлять максимум целевой функции (функции полезности) центра (по сравнению с использованием любой другой допустимой системы стимулирования).

Второе условие для центра аналогично условию участия для агента, а именно – заключение контракта с данным агентом выгодно для центра по сравнению с сохранением статус-кво, то есть отказу от заключения контракта вообще. Например, если считать, что прибыль предприятия (значение целевой функции центра) без заключения контракта равна нулю, то при заключении контракта прибыль должна быть неотрицательна.

Качественно обсудив условия заключения взаимовыгодного трудового контракта, вернемся к формальному анализу.

Легко видеть, что в рамках введенных предположений при участии агента в рассматриваемой организационной системе ему гарантируется как минимум нулевое значение полезности. Условие неотрицательности полезности агента:

(9) y P( ) f(y) является «условием участия» или «условием индивидуальной рациональности». Следовательно, как минимум, реализуемыми будут такие действия, при выборе которых значения целевой функции агента будут неотрицательны:

(10) P0( ) = {y A | (y) c(y)} P( ).

Из этого следует, что выбор величины затрат от нулевого действия агента и ограничений в условиях индивидуальной рациональности может быть произведен относительно произвольным образом, правда, согласованным с условием индивидуальной рациональности и ограничениями на стимулирование.

Поясним последнее утверждение. Более корректно (то есть с учетом условия индивидуальной рациональности) множество реализуемых действий следует определить как множество таких точек максимума целевой функции агента, в которых выполнено условие индивидуальной рациональности:

(11) P( ) = Arg max { (y) - c(y)} {y A | f(y) U }.

Pages:     | 1 || 3 | 4 |   ...   | 13 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.