WWW.DISSERS.RU


...
    !

Pages:     | 1 ||

Oe cpay, o aeaec ycoe oea ccee a aoo ococ opaac paeope peeoo a, oop paccope e 2 (c. pc. 2.12) a pepe oea e oa (c. pc. 2.13). poea coco o, o c oo oopa cooecyx aeaecx y opa oex po ooecx aopo aoec oy, oope e ye pocee ccee Boeppa. ae eoxoo opee xapaep ycooc, o ce ae aooea peeoo a acoc o coooe apaepo ypaex.

B peyae aaa oee oo opee e e ocoeoc aecoo oee cce, oye e o ooec cc. Bae ooece aop, e yaee aoo oe Boeppa (5.16), peypy copoc oea ep acee e xo, x oype a ep, paoee cepoc ep xo, a ae pye pye exa. M aoe eoope x. Ta, oe (5.13) pae copoc ea ep (e a x x ) ocycye acee 12 1 xa, o aaec p eox oocx ep. p ox oocx ep pocxo acee, oopoe oe ocac ye ea, poeco ye (x) a xmax (x1) =, (5.17) 1 xe aca pao xa p e , max ooc oy ep ( ocoa, aa, o 1/ ooc oy ep, p oopo pao x) cocae ooy o acaoo, .e. (x )=0.5 ). Toa copoc ea ep pa1 max c a x)x. pyo e oype xo a epy peaaec oca aeaeco ye, ae ee ace. coa, pae copoc ea ep eco x ) x oec e 1 bx2 x1 bxmax (x1) = (5.18) 1 x2 1- x1 1 xoop, a o, co oaec o ea a x x cxoo oe12 1 Boeppa. Cyecye oo pyx aeaecx op ac y paoe, e ea, oope coy oca pax ooecx cya.

oo, o acoc o a y pax acx ypae ooo paoe aecoe oeee cce.

ooy o o opoc: aoo poa y oy oca ay ceoc aoecyx oy (x-epa) a ocoeoc yy oaa aoe oppe oee acoc o x coc M e ye aac aeaece opooc, a pee cpay peya cceoa (ooopo, 1972). Oaaoc, o p pax coooex apaepo ccea.oe oaa y pe oco oa. Oa x axoc aae oopa x = x = cea ec ceo. e 0, pye oy ceo o yco eyco oyco yo. Ec caoapa oa eyco oyc, o opy eo oy cyecoa peee ycoe epoece oeaee pee (pc. 5.4). Oa ocpoex oee ocae ay ceoc oy x-epa c yeo eo ace xo ypoo oype ep xo. oce ae epeex a ccea ypae ee x1xx1 = x1 - - x1, 1 x(5.19) x1xx2 =- x2 - x2.

1 xa oe ee aop aox oppeo acoc o oa ae apaepo. Ha pc. 5.5 pee pep aooo oppea, e ccea oaae pe oco oa: B eyco oyc, C ceo, B yco oyc. p o opye paeope ycooo peeoo a.

Pc. 5.4. ao oppe cce, ocae aoece yx o (ooopo, 1972). Beea aya paeop pee Ccea, axoac eycoo oac B, oe c opeeeo epooc epe oac ycoo o o a yco pee . B peax cceax cea peo c epeceee ypaox pa epexo oo oac ycooc pyy poxo p ocaoo cx ex oecx, ex ceoc o.

Pc. 5.5. pep aooo oppea cce 5.19 (c. ec) Paccopee a e oe oy eepcec. Oao peao ccea oe oepac cya oec, o cao c yya ceoc o ae apaepo cce.

poe oo, ca poecc paoe e, o cy, oc epooc xapaep. p oo ce ocoe eepcecoe ocae coaae co coxacec, . e. ae o ceoc o, oyee p pee epeax ypae, coaa c cooecy aeaec oa. Oao ye coxacecoo xapaepa ooecx poecco caoc ocoeo a p eox paepax oy. B o cyae cpeee apaoe ooee ceoc oeo o oy o aeaecoo oa oe ooo ae. o po oy, o p paccope ao-o opeeeo oy pa poca oapy aee oea, xapaepy e ca yyaoy eoc aoo poecca eo ooee o eopeecx px (aox paeop), aaaex eepceco oe. yc, apep, eoopo oe aoo paeop oe x-epa aa-o epeea (x ) e oe ea, oa cyae yya oy pec oy, o opaaa oa ye c aoo paeop a oy oce (oc x ), .e. ceoc ooo o ( x ) opac y, a (x ) 1 2 pe. Ta opao, coxaceca oe pecae oeo cee pae ooo o. oepe ee pa, o e poc p eox ceocx oy.

B e 4 paccapa oe c pacpeee apaepa, oopx epeee ec e oo o pee, o pocpace. ye ca, o pa a xo, a ep pocpace oc xapaep cyax ya a y. Toa oeee poco cce Boeppa oo oca c oo ypae a (4.6) x x = c x - a x x D (5.20), t r x x = a x x - c x D.

t r ec D, D oe y (pa) ocoe apea1 2 e x pacpocpae; e caoopae (e a x, a x ) 11 1 22 ocycy. B o ccee p opaeo apeae pacpocpae coxpaec aecea apa epoecx oea. Oao ec apea e ec opae, . e. ccea e aya pocpace, o e oy oa pee e yxc o.

Aa oe (5.20) poee peooe, o D = 0, . e.

pa ep ocycye, o peao cya oaae cyeceo ey ooc ep o cpae c xa. Pee oyac e o ep xo, pacpocpaec pocpace.

Ha pc. 5.6 oaao pacpeeee ooce oy ep xo o po1 cpaceo oopa cpoa oe pee. o ec,. a oop, "oa oo eca". C eee pee pocxo poee o o o oopa 7. Ececeo, o aao oe a pa pocxo opoee x o cy ypae Pc. 5.6. Pacpeeee ooc oyoeo oe, cooec xo ( ) ep ( ) po2 yx aoy xapaepy cpace pacpeeeo cce (5.20).

py o coeopaoo pocpaceoo oee ooecx cceax c caoape eoopoe pacpeee epeex pocpace ccae cpyyp, oope oo cooca c "a ppoe". Ocooe aee ee opoc, a opao ca ey coo aooeaee pe oex oex ccae cpyyp cooecyx pacpeeex cceax.

Oa pocx oex oee Boeppa, ex pee , pecaea e cooecye e pacpeeeo cce, a x k - x x = ax - bx x D t x r, (5.21) x =-cx x t B o ccee o cpae c poco oe Boeppa e - x k ax, oca ay ep ocyce xa, ox aae yeco eeoc (cp. c (5.3)). o oycoeo oo paoee ep, oa copoc poca p ax oocx poopoaa cy cpe ey oco, . e. apay ooc oy (ax ).

Ccea (5.21) a cceoaa a BM ye ceoo cepea p yco ao ooc ep (D /D = 1000) ao 2 coooe apaepo, oa oeo ccee pocxo ycoe aooea (,/c=1; c/,=0,4).. Oaaoc, o ccee oy a pax pea. p ox aax ycox ycaaaec aooeae o pee pe p oopoo pocpace pacpeee ooeo. o cooecye ycooy peeoy y oeo cce (pc. 5.7), oa pocxo cxpoe oea ceoc o cey apeay pacpocpae.

Pc. 5.7. Heoope aae pacpeee ooc oy ep (a, ), poe cxpo oopo oea o cey oeoy apeay () (a, Mapa, 1980) Cyecy pye aae yco, p oopx ccee co peee oae ycoa ccaa cpyypa, . e. caoapoe epoecoe pacpeeee oepa pocpace (pc. 5.8). B o cyae pacpeeee xo, cpo ppyx apeae pacpocpae, o oopooy (o "paaac" ccee). Haoopo, oepa eeo ppyx ep, eyx oce opa , paa pax oax pocpaca.

Pc. 5.8. Heoope aae pacpeee ooc oy ep (a, , ), poe ycaoe caoapo ccao cpyyp

Pages:     | 1 ||



2011 www.dissers.ru -

, .
, , , , 1-2 .