WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 |
Палий А.А.

Палий А.А.

Оценка NAIRU для российской экономики в период с 1994 по 2005 год Существование отрицательной зависимости между инфляцией и уровнем безработицы было отмечено У. Филипсом в 60-х годах прошлого века для экономики США. Впоследствии данная зависимость получила название кривой Филипса. Долгосрочная кривая Филипса, выведенная из макроэкономических моделей, основана на понятии «не ускоряющего инфляцию уровня безработицы» (NAIRU). Согласно теории в долгосрочном периоде безработица установится как раз на уровне NAIRU.

Определение равновесного уровня безработицы следует из самого его названия: это такой уровень безработицы, при котором инфляция остается постоянной при прочих равных условиях. Если уровень безработицы выше равновесного уровня, то согласно теории будет происходить замедление инфляции, если же ниже – то ускорение. Вывод из теоретической модели, объясняющей наличие отрицательной зависимости между инфляцией и уровнем безработицы, дал старт к построению эмпирических оценок NAIRU, значение которой важно для проведения экономической политики, и дает возможность властям определить, можно ли увеличивать объем выпуска и, соответственно, занятость в экономике путем проведения мягкой денежно-кредитной политики без риска быстрого ускорения инфляции.

Изначально кривая Филипса строилась для развитых стран, имеющих низкую инфляцию. Для развивающихся экономик, зачастую имеющих более высокий уровень инфляции, кривая 31 1. Макроэкономика, денежно-кредитная и валютная политика Филипса редко имеет такой вид1. Таким образом, выведенная на основе опыта развитых стран концепция равновесного уровня безработицы не всегда справедлива при анализе ситуации в развивающихся странах и странах с переходной экономикой, особенно в периоды высокой инфляции. Попытки оценить NAIRU или протестировать само выполнение зависимости Филипса предпринимались многими экономистами для США и стран Евросоюза, т.е. для стабильных, развитых экономик. Как правило, авторы исследований получали равновесный уровень безработицы в диапазоне от 4 до 7%2.

Для России проблема оценки NAIRU осложняется тем, что Россия на протяжении рассматриваемого периода находилась в состоянии трансформационного перехода от плановой экономики к рыночной, вследствие чего экономическая ситуация и само поведение всех макроэкономических временных рядов весьма нестабильны. Поэтому сложно априорно судить о степени применимости самой концепции NAIRU к России. Кроме того, поскольку ряды макроэкономических данных по России ведутся только с начала 1990-х годов, возникает проблема оценки модели при малом количестве точек.

Поскольку большинство моделей оценки NAIRU построено для развитых стран, в которых уровень безработицы является стационарным временным рядом, эти модели не работают применительно к российской экономике, в которой уровень безработицы был интегрированным первого порядка временным рядом в период с 1994 по 2005 г. Кривая Филипса для Если для Польши с 1991 по 2003 г. еще присутствует отрицательная зависимость между инфляцией и безработицей, то для Словении зависимость скорее положительная.

Например, для экономики США на начало 2000 г. оценка равновесного уровня безработицы составляет около 5%.

Палий А.А.

России на квартальных данных показана на рис. 1. Опираясь на этот график, можно говорить о том, что отрицательная зависимость между уровнем безработицы и инфляцией в России наблюдалась лишь на отдельных временных интервалах. Однако такие зависимости наблюдались при заметно разных уровнях безработицы, что позволяет априорно предположить необходимость использования подхода в предположении изменяющегося со временем NAIRU.

Рис. 1. Кривая Филипса для России (квартальные данные с 1 квартала 1994 г. по 1 квартал 2005 г.) Для оценки не ускоряющего инфляцию уровня безработицы для случая российской экономики были использованы два метода, позволяющих найти оценку NAIRU с учетом нестационарности уровня безработицы, и один метод оценки – для стационарного уровня безработицы на более коротком временном интервале (в период с января 2001 г. по апрель 2005 г.).

Первый метод заключается в использовании коинтеграционного соотношения между нестационарными переменными, 1. Макроэкономика, денежно-кредитная и валютная политика т.е. между уровнем безработицы и теми нестационарными переменными, чья динамика отражает динамику шоков предложения (например, реальным обменным курсом, ценами на нефть и т.п.). Найденное коинтеграционное соотношение включается в регрессию оценки краткосрочной кривой Филипса вместе со стационарными рядами. После чего уже из полученной регрессии можно найти оценку NAIRU.

В основе второго метода лежит выделение стационарной компоненты уровня безработицы в предположении, что она отвечает за изменение инфляции. Затем, на основе оценки вышеприведенной регрессии со стационарными переменными, отражающими шоки предложения (например, прирост реального обменного курса и т.п.), получить оценку постоянной компоненты NAIRU и, сложив ее с нестационарной частью, получить в результате оценку в предположении изменяющегося со временем равновесного уровня безработицы.

Третий метод заключается в выделении периода, на котором уровень безработицы был стационарным временным рядом, т.е. с начала 2001 г. по начало 2005 г., и построении оценки NAIRU на основе использования фильтра ХодрикаПрескотта.

Для оценки NAIRU необходимо оценить коинтеграционные соотношения безработицы и интегрированных первого порядка шоков предложения (это могут быть либо цены на нефть, либо реальный обменный курс, либо и то, и другое вместе).

Результаты тестов на коинтеграцию приведены в табл. 1 и 2.

Помимо вышеописанных коинтеграционных уравнений проверялось также наличие связи между уровнем безработицы и ценами на нефть, но гипотеза о наличии такого коинтеграционного соотношения была отвергнута. Таким образом, было получено два коинтеграционных соотношения, связывающих, Палий А.А.

во-первых, уровень безработицы и реальный обменный курс, а во-вторых, уровень безработицы, реальный обменный курс и цены на нефть.

Таблица Проверка наличия коинтеграционного соотношения между уровнем безработицы и реальным обменным курсом Период оценок 1994/01 – 2005/Количество наблюдений Проверка наличия коинтеграционных соотношений Гипотеза:

количество коинтеграцион- Собств.знач. Статистика 5% крит. знач.

ных соотношений При помощи likelihood ratio Нет *) 0.117 20.796 19.Не более 1 0.044 5.4781 9.Уровень безрабо- Реальный Константа тицы обменный курс Нормализованные коэффи1.000 –0.205 13.циенты Стандартные ошибки (0.200) (16.500) *) – гипотеза отвергается.

На основе результатов проделанных тестов можно выписать два соответствующих коинтеграционных соотношения. Затем, для того, чтобы иметь возможность оценить NAIRU, были построены ARMEX регрессии вида:

Ct = A(L)t + ARMA( p, q) +t, где Сt – полученное коинтеграционное соотношение (см. табл.

1 и 2).

1. Макроэкономика, денежно-кредитная и валютная политика Таблица Проверка наличия коинтеграционного соотношения между уровнем безработицы, реальным обменным курсом и ценами на нефть Период оценок 1994/01 – 2005/Количество наблюдений Проверка наличия коинтеграционных соотношений Гипотеза:

количество коинтеграционных Собств.знач. Статистика 5% крит. знач.

соотношений При помощи likelihood ratio Нет *) 0.224 37.290 29.Не более 1 0.043 6.848 15.Не более 2 0.013 1.618 3.Реальный Уровень безрабо обменный Цены на нефть Константа тицы курс Нормализованные коэф- 1.000 –0.139 0.498 –4.фициенты Стандартные (0.062) (0.170) ошибки *) – гипотеза отвергается.

Были оценены две регрессии (для двух контеграционных соотношений). Одна из них была оценена с помощью МНК, а другая - с помощью метода максимального правдоподобия для ARCH спецификации. Результаты представлены в табл. 3 и 4.

Остатки в итоговой регрессии нормально распределены и в них отсутствует автокорреляция и гетероскедастичность.

На основе полученных уравнений можно найти оценки NAIRU для каждой из этих моделей путем приведения полученных уравнений к виду:

t = a + B(L)ut + A(L)t + C(L)Zt +t.

Палий А.А.

Отсюда можно получить оценку для NAIRU как:

a u* =-.

B(1) Таблица Результаты оценок кривой Филипса с реальным обменным курсом в качестве шока Коинтеграционное соотношение между уровнем Объясняемая переменная безработицы и реальным обменным курсом Период оценок 1994/02 – 2005/Метод оценки ML – ARCH Количество наблюдений Коэффициент P-значение t-стат.

Константа –0.319 0.Изменение инфляции 0.229 0.Первый лаг изменения инфляции 0.194 0.Второй лаг изменения инфляции 0.117 0.Лаг коинтеграционного соотношения 0.951 0.MA(1) 0.586 0.MA(2) 0.360 0.Уравнение для дисперсий Константа 0.231 0.ARCH(1) 0.546 0.Adj. R2 0.Значимость F-статистики 0. 1. Макроэкономика, денежно-кредитная и валютная политика Таблица Результаты оценок кривой Филипса с реальным обменным курсом и ценами на нефть марки Брент в качестве шоков Коинтеграционное соотношение между уровнем Объясняемая переменная безработицы, ценами на нефть и реальным обменным курсом Период оценок 1994/02 – 2005/Метод оценки МНК Количество наблюдений Коэффициент P-значение t-стат.

Константа 0.112 0.Изменение инфляции 0.157 0.Первый лаг изменения инфляции 0.126 0.Второй лаг изменения инфляции 0.068 0.Лаг коинтеграционного соотноше0.950 0.ния MA(1) 0.193 0.Adj. R2 0.Значимость F-статистики 0.Результаты оценок оказались следующими: для регрессии с коинтеграционным соотношением, где в качестве переменной взят реальный эффективный обменный курс рубля, динамика которого отражает динамику шоков предложения, оценка NAIRU оказалась равна –6,5%, а для регрессии на основе коинтеграционного соотношения, где в качестве переменной выступают цены на нефть и реальный обменный курс, чья динамика отражает динамику шоков, оценка NAIRU дала 2,2%. Так как российская экономика относится к развивающимся экономикам, для которых характерна нестабильность, то отрицательное и заниженное значение равновесного уровня безработицы свидетельствует в пользу гипотезы о неприменимости концепции постоянного во времени NAIRU для российской экономики на рассматриваемом периоде.

Палий А.А.

Оценка в предположении изменяющегося со временем NAIRU. Следующим вариантом оценки NAIRU является оценка краткосрочной кривой Филипса с использованием стационарных переменных, чья динамика отражает динамику шоков.

При этом возникает следующая проблема: все переменные, за исключением уровня безработицы, в оцениваемом уравнении стационарны, а уровень безработицы представляет собой интегрированный ряд первого порядка. В этой ситуации логично предположить, что только NAIRU может дать нестационарную компоненту, входящую в уровень безработицы. Поэтому уровень безработицы был сначала разделен на нестационарную и стационарную части, а затем была проведена оценка кривой Филипса, в которую была включена только стационарная компонента уровня безработицы. После проведения этой оценки стало возможным вычислить стационарную часть NAIRU из оценки краткосрочной кривой Филипса и, сложив ее с нестационарной компонентой уровня безработицы, получить оценку изменяющегося со временем NAIRU. Результаты разделения ряда уровня безработицы на стационарную и интегрированную первого порядка компоненты приведены на рис. 2.

После такого разделения уровня безработицы стала возможным оценка краткосрочной кривой Филипса. Оценивались уравнения вида:

nm t = µ + ut-i + t-k + Xt + t + ma(q).

i i i=1 k = 1. Макроэкономика, денежно-кредитная и валютная политика --Уровень безработицы I(1) компонента I(0) компонента Рис. 2. Уровень безработицы, разложенный на стационарную и нестационарную составляющие в период с января 1994 г. по май 2005 г.

Число лагов подбиралось для каждой конкретной регрессии и, как правило, не превышало 4. Использовались следующие стационарные переменные, чья динамика отражает динамику шоков предложения: индекс промышленного производства, прирост реального эффективного обменного курса рубля, изменение цен на нефть марки Брент. Результаты оценок лучших регрессий можно видеть в табл. 5 и 6.

т р т р ь ь в в р в в р к кт к кт ль л нь л н п н п о о о о ян ап я а ян ап я а ю ю и ию и ию Палий А.А.

Таблица Результаты оценок кривой Филипса с приростом реального обменного курса в качестве шока Объясняемая переменная Прирост инфляции Период оценок 1994/06 – 2004/Метод оценки ML – ARCH Количество наблюдений Коэффициент P-значение t-стат.

Константа 0.334 0.Первый лаг изменения инфляции 0.086 0.Второй лаг изменения инфляции –0.027 0.Третий лаг изменения инфляции –0.083 0.Четвертый лаг изменения инфляции –0.360 0.Первый лаг уровня безработицы –78.211 0.Второй лаг уровня безработицы 41.758 0.Третий лаг уровня безработицы 99.144 0.Четвертый лаг уровня безработицы –58.968 0.Изменение реального обменного курса –0.565 0.MA(3) –0.107 0.MA(4) 0.186 0.Уравнение для дисперсий Константа –1.183 0.|RES|/SQR[GARCH](1) 2.961 0.RES/SQR[GARCH](1) 0.166 0.На основе полученных регрессий были построены оценки для NAIRU по следующей формуле:

µ NAIRU =- + I(1) часть u B(1) 1. Макроэкономика, денежно-кредитная и валютная политика Таблица Результаты оценок кривой Филипса с индексом промышленного производства в качестве шока Объясняемая переменная Прирост инфляции Период оценок 1994/06 – 2004/Метод оценки ML – ARCH Количество наблюдений Коэффициент P-значение t-стат.

Константа 2.690 0.Первый лаг изменения инфляции –0.743 0.Второй лаг изменения инфляции –0.237 0.Третий лаг изменения инфляции –0.091 0.Первый лаг уровня безработицы –31.065 0.Второй лаг уровня безработицы 45.235 0.Третий лаг уровня безработицы 64.100 0.Четвертый лаг уровня безработицы 50.998 0.Dummy на кризис 1998 г. 4.215 0.Индекс промышленного производства –0.036 0.MA(1) 0.595 0.Уравнение для дисперсий Константа –1.558 0.|RES|/SQR[GARCH](1) 1.974 0.RES/SQR[GARCH](1) –0.227 0.EGARCH(1) 0.534 0.Постоянная компонента NAIRU по двум регрессиям оказалась равной –9.0% и –2,1%, соответственно. Таким образом, был оценен изменяющийся со временем NAIRU, два варианта его оценок можно видеть на рис. 3 и 4.

Палий А.А.

Рис. 3. Уровень безработицы и NAIRU в период с января 1994 г. по май 2004 г.

Рис. 3 соответствует оценке NAIRU, полученной на основе регрессии, в которой в качестве переменной, отражающей шоки, взят прирост реального обменного курса. В целом динамика изменения NAIRU примерно соответствует динамике уровня безработицы. До начала 1999 г. равновесный уровень безработицы рос. Самый высокий уровень NAIRU был в феврале 1999 г. – 6.8%. Затем NAIRU стал уменьшаться, на начало 2004 г. его уровень составлял около –1%.

Pages:     || 2 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.