WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 191 | 192 || 194 | 195 |   ...   | 506 |

Веса или коэффициенты регрессии определяются с наибольшей надежностью в тех случаях, когда независимые переменные являются относительно некоррелированными. Наличие высоких интеркорреляций между нек-рыми из них называется "мультиколлинеарностью" и приводит к получению коэффициентов регрессии, величина к-рых может заметно и нерегулярно изменяться от выборки к выборке. М. р. широко применяется для решения следующих задач.

1. Получение наилучшего линейного уравнения прогноза.

2. Контроль за смешиванием переменных (факторов).

3. Оценка вклада определенной совокупности переменных.

4. Объяснение сложного на вид многомерного комплекса взаимосвязей.

5. Проведение дисперсионного и ковариационного анализов посредством кодирования уровней независимых переменных.

См. также Множественная корреляция, Методы многомерного анализа Б. Фрухтер Множественная семейная терапия (multiple family therapy) М. с. т. представляет собой подход к решению проблем, разработанный покойным Питером Лакёром. Метод осн. на его опыте работы со стационарными больными шизофренией и представляет собой комбинацию параметров групповой терапии и совместной семейной терапии. Согласно его гипотезе, сеансы одновременной терапии неск. семей дают членам семьи благоприятные возможности для идентификации с другими, что может вести к решению практ. проблем.

В М. с. т. движущей терапевтической силой является не перенос, а идентификация; это означает, что один индивидуум стремится походить на другого или соперничать с ним. Потребность в идентификации и принятии наиболее важна в семьях с больными шизофренией, поскольку наличие такого больного чревато соц. изоляцией семьи. Вследствие этого между членами семьи часто возникают напряженные отношения, вынуждающие их искать поддержки у окружающих. М. с. т. имеет целью лечебное воздействие семей друг на друга, в то время как главным источником лечебного эффекта в индивидуальной терапии является психотерапевт.

Хотя М. с. т. обязана своим происхождением работой с семьями шизофренных больных, ее применение сейчас знач. расширилось и не ограничивается уже исключительно этим контингентом. В ее основе есть 2 предпосылки: а) в семьях можно обнаружить как силу, так и слабость, и б) люди могут учиться друг у друга благодаря идентификации и непрямому научению.

Структура Семья может оказывать как целебное, так и патогенное воздействие. В ходе своего развития человек многому обучается в семье. Теория М. с. т. исходит из того, что, хотя индивидуум или семья могут обнаруживать несостоятельность в какой-то области, они могут проявлять силу в другой. Метод Лакёра и его коллег заключается в проведении 6-10 сеансов терапии длительностью 90 мин., в к-рых участвуют члены пяти-шести семей, свободно обсуждающие свои проблемы. Психотерапевт играет роль фасилитатора, направляющего дискуссию и приглашающего отдельных участников к комментариям или отреагированию.

Процесс терапии М. с. т., как и большинство терапий, проводится в неск. этапов. Однако, в отличие от этого большинства, она более ограничена по времени и тематике. В ней выделяются 3 этапа: наблюдение, вмешательство и консолидация. На первом этапе участников побуждают к общему разговору, в ходе к-рого выявляются темы для обсуждения.

М. с. т. ориентирована не на личную динамику, а на решение проблем. На втором этапе акцент делается на взаимодействии, исходя из того, что изменения должны быть взаимными, а не достигаться лишь каким-то одним лицом. Это - трудный этап, поскольку люди часто считают, что решать их проблемы должны другие. Психотерапевт должен обратить внимание на взаимно деструктивное поведение. Эта стадия демонстрирует терапевтические возможности М. с. т., когда отдельные участники помогают психотерапевту в выявлении контрпродуктивных паттернов взаимодействия. Часто используется разыгрывание ролей.

Третий этап представляет собой завершение и консолидацию: оценивание достигнутого прогресса и заключение о достаточности проделанных изменений. Что еще важнее - это время для того, чтобы понять, что изменения осуществимы лишь при условии, что члены семьи мотивированы на продолжение работы над своими отношениями.

Резюме М. с. т. оказалась в особенности эффективной в работе с городским афро-американским населением и с выписанными из стационара больными. Она дает простор для раскрытия творческого потенциала терапевта и приносит результат в относительно быстрые сроки. Этот подход несложен в обучении и не зависит исключительно от интуиции терапевта.

См. также Поведенческая терапия, Группы достижения изменений В. Фоули Модели нейронных сетей (neural network models) Модели, включающие сети нейроноподобных элементов, приобрели известность в психологии и родственных дисциплинах, когнитивной науке и нейробихевиоральной науке. Такие модели появились тж под предметными заголовками коннекционистских моделей и распределенной параллельной обработки. В области познавательных процессов сети использовались для объяснения таких различных феноменов, как распознавание слов, категоризация, восприятие зрительного паттерна, координированное моторное действие, и неврологические расстройства. В этом отношении, М. н. с. представляют собой резкий отход от прежних теорий, к-рые предполагали манипуляции символической информ. по типу грамматических. Неграмматические и несимволические свойства нейронных сетей тж обусловили их пригодность для объяснения отличных от человеческого видов научения и его нейронных основ.

Нейронные сети предназначены для порождения системы вычислений, к-рая является кооперативной и самоорганизующейся. Т. о. нейронная сеть не содержит в себе к.-л. эксплицитной исполнительной или контролирующей подсистемы. Предполагается, что поведение, к-рое внешне следует правилу, гипотезе или стратегии, возникает из взаимодействий между элементами, ни один из к-рых не содержит правила, гипотезы или стратегии. Несмотря на то что сетевые модели опираются на представление о нейроне, осн. масса этих моделей лишь незначительно ограничивает себя рамками общеизвестной архитектуры и функционирования реальных НС. В очищенном от своих дополнительных значений виде, нейронные сети являют собой единственный тип количественной модели, подпадающей под традиционные критерии проверки любой модели в психологии. Потребовалось широкое использование компьютерного моделирования, чтобы эти модели достигли полного и точного определения через их собственные внутренние операции и механизмы порождения выходных сигналов, позволяющего осуществлять четкие поведенческие прогнозы.

Основные характеристики Элементы типичной нейронной сети можно описать при помощи двух уравнений, а именно правила активации (или возбуждения) и правила обучения. Правило активации объединяет (суммирует) входы в элемент и формирует уровень выходного сигнала. Вычисления сети связаны с передачей выходных активирующих сигналов заданного уровня от одного элемента на входы др. элементов. Правило обучения изменяет силу активных входов посредством переменных, наз. весами связи. Входной уровень для принимающего элемента обычно определяется произведением воспринимаемого уровня активации и текущего веса связи в принимающем элементе.

Линейный пороговый элемент Начало совр. правилам активации было положено в работе Мак-Каллока и Питтса, касающейся способности нейронов действовать как логические вентили. На рис. 1 изображен линейный пороговый элемент. В его левой части представлены входные переменные, описываемые как входные уровни активации (Xi) и взвешенные связи (Vi). Каждая переменная может принимать любое вещественное значение. Однако уровни активации обычно задаются двоичными значениями (Xi = 0,1), а веса - значениями в пределах от -1 до +1. Суммарный входной уровень в любой момент времени определяется суммой весов активных входов ( [Vi Xi]). Подобно входным уровням активации, выходной сигнал элемента тж представлен двоичными значениями (Y = 0,1). Активация выхода определяется на основе сравнения суммарного входного уровня с пороговой величиной () по следующей формуле:

Y = 1, если (Vi Xi) >, в противном случае Y = 0.

Рис. 1. Линейный пороговый элемент, в котором Хi - входные уровни активации, Vi - веса связей, - пороговая величина, a Y - выходной уровень активации.

Манипулируя весами связи или пороговыми величинами, можно синтезировать общие логические функции. Напр. логический элемент И может быть сконструирован следующим образом. Предположим, что некий элемент имеет два входа (X1, Х2), каждый с весом связи 0,50 (V1 = V2 = 0,50), и что пороговая величина этого элемента = 0,75. Согласно правилу активации Мак-Каллока - Питтса, для того чтобы суммарный входной уровень превысил данную величину порога и тем самым инициировал выход (Y), должны быть активными оба входа (X1 = Х2 = 1). Тот же самый элемент может быть преобразован в логический элемент ИЛИ снижением порога до величины менее 0,50 или повышением веса входов до величины более 0,75. Наконец, для полноты логической системы, можно сконструировать оператор НЕ путем инвертирования правила активации, так что когда суммарный входной уровень превышает величину порога, элемент, который бы в противном случае инициировался (Y = 1), будет выключаться (Y = 0). Это инвертированное правило активации может быть записано как:

Y = 1, если не (Vi Xi) >, тогда Y = 0.

Синаптическая фасилитация Истоки правил обучения для сетей кроются в идее, сформулированной впервые в общих чертах Хеббом. Коротко говоря, он применил старый закон смежности к уровню нейронной активности и утверждал, что синаптическая передача будет получать выигрыш в эффективности всякий раз, когда пресинаптическая активность оказывается смежной по времени с постсинаптической активностью. На рис. 2 приведен пример хеббовского элемента. Этот хеббовский элемент имеет две входные связи. Один вход (Xi), наз. здесь "сигнальным" входом ("cue" input), не обладает изначально весом связи и, следовательно, не способен активизировать элемент. Др. вход (Х0), обычно наз. "обучающим" входом ("teacher" input), имеет фиксированный большой вес (V0 = 1), позволяющий активизировать элемент и вызвать "ответный" выход ("response" output). При совмещении во времени обоих входов, сигнальный вход будет обеспечивать пресинаптическую активность (Xi), а обучающий вход будет вызывать постсинаптическую активность (Y). В мат. терминах, изменение веса связи (Vi) выражается в виде произведения двух уровней активности. Это правило обучения может быть записано как Vi = сХiY, где с - коэффициент пропорциональности (0 < с < 1).

Рис. 2. Хеббовский адаптивный элемент, в котором Xi - уровень сигнального входа, Vi - адаптивный вес связи, Х0 - уровень обучающего входа, a Y - уровень выходной реакции.

Если по хеббовскому правилу научение находится в строгой зависимости от смежности уровней активации, согласно др. правилам научение зависит от ошибки в способности веса сигнального входа соответствовать обучающему входу. Одно из наиболее часто используемых правил этого рода известно под разными наименованиями: правило допустимой ошибки (дельта), правило Ресколы - Вагнера (the Rescorla - Wagner rule), правило Видроу - Хоффа (the Widrow - Hoff rule) и правило наименьших средних квадратов (least-mean squares rule). При наличии множества одновременных сигнальных входов это правило может быть записано как Vi = с (V0X0 - [Vi Xi]) Xi. Анализ этого правила показывает, что когда суммарный вход ( [Vi Xi]) существенно отличается от активации, вызываемой обучающим входом (V0 X0), это приводит к резкому изменению веса связи каждого подходящего входа (Vi). И наоборот, когда это различие мало, изменение также будет малым.

Правило исправления ошибок (error-correction rule) оказывается более сложным, чем хеббовское правило смежности, однако имеет 3 осн. преимущества при моделировании ассоциативного обучения.

1. Самоограничивающиеся приращения. Тогда как правило смежности порождает веса связи, к-рые растут линейно, правило исправления ошибок является самоограничивающимся. Эта его особенность производит отрицательное ускорение, к-рое можно наблюдать в большинстве кривых научения.

2. Обратимость. Правило смежности продуцирует только положительные приращения в научении, тогда как правило исправления ошибок порождает не только положительные, но и отрицательные приращения (или затухание). В частности, в правиле смежности, отсутствие обучающего входа (Х0) исключает любые приращения, но при этом не влечет эффекта затухания. В свою очередь, в правиле исправления ошибок, отсутствие обучающего входа означает, что вычитаемый член уравнения принимает отрицательные значения (- [Vi Xi]), тем самым производя понижение веса связи (Vi). Т. о., правило исправления ошибок может отслеживать изменения прогнозируемого значения "сигнального" входа для определенного "обучающего" входа.

3. Избирательность. Когда имеется множество сигналов, хеббовское правило смежности применяется независимо к каждому входу. В отличие от него, правило исправления ошибок предполагает, что изменение ассоциативной силы для каждого входа зависит от результирующей ошибки по всем активным входам. Напр., если определенный набор сигнальных входов уже приобрел высокие веса, то тогда разность членов (V0X0 - [Vi Xi]) будет приближаться к нулю и тем самым препятствовать приобретению веса дополнительными, одновременно действующими сигналами. Т. о., избыточные сигналы будут эффективно подавляться. Кроме того, если ни одни из сигнальных входов не обладает предварительным преимуществом, общий вес связи будет распространяться на все одновременно действующие сигнальные входы. В результате, элемент может "настраиваться" так, что он будет активизироваться только определенной конфигурацией входов, а не к.-л. одним из этих входов.

Основные архитектуры Несмотря на то что материалом для строительных блоков нейронных сетей являются отдельные элементы, мн. из эмерджентных свойств сети определяются архитектурой их взаимосвязей. Существуют 2 осн. архитектуры, встречающиеся в большинстве моделей, а именно, сети, содержащие множество слоев элементов, и сети, в к-рых выходы возвращаются в качестве входов в сеть.

Многослойные сети Пример простой многослойной сети приведен на рис. 3. Эта сеть имеет два входа (A, В), каждый из к-рых проецируется на два элемента (X, R). Элемент X, находящийся между событиями на входе и выходным элементом наз. скрытым элементом. Эта небольшая сеть содержит пять модифицируемых связей, а именно A-Х, A-R, В-Х, B-R и X-R.

Рис. 3. Конфигурация многослойной сети, подчиняющейся правилу исключающего ИЛИ.

Pages:     | 1 |   ...   | 191 | 192 || 194 | 195 |   ...   | 506 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.