WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 181 | 182 || 184 | 185 |   ...   | 506 |

Когда число объединяемых данных невелико, при оценивании общей значимости данных разумно воспользоваться не одной, а несколькими процедурами параллельно. Даже если объединяется большое число опубликованных данных, рекомендуется использовать вторую процедуру объединения как средство проверки результатов М. Хотя существенные различия в результатах применения метааналитических процедур встречаются крайне редко, вычисление критериальных статистик разными методами все же делает выводы анализа более убедительными. В зависимости от конкретных обстоятельств, исследователь должен рассматривать возможность применения и других процедур, включ. модели сложения вероятностей и проверки среднего р Эджингтона (Edgington's adding probabilities and testing mean p models), модели сложения взвешенных Z-величин и проверки среднего Z (the adding weighted Zs and testing mean Z models), а также различные вычислительные методы и методы объединения данных в блоки.

Оценка величины эффекта Вторая общая метааналитическая стратегия в области объединения данных, полученных в разных исслед., предполагает оценивание силы интересующего эффекта. В отличие от первой стратегии, предполагающей определение общей значимости данных, оценка величины эффекта сосредоточена более конкретно на силе эффекта гипотетической связи между переменными. Как заметил Коэн: "Не подразумевая каких-либо необходимых выводов о причинности, удобно пользоваться выражением величина эффекта в значении уровня представленности определенного феномена в генеральной совокупности или, иначе говоря, степени ложности нулевой гипотезы (нулевой величины эффекта)".

Оценки величины эффекта можно получать с помощью широкого множества методов. В данном случае мы ограничимся рассмотрением статистических критериев, подходящих для оценки а) корреляционных связей и б) групповых различий на основе t-критерия Стьюдента. При оценивании эффекта корреляционных связей цель заключается в объединении данных разных исслед., касающихся связи между двумя изучаемыми переменными, измеренными в интервальной шкале или шкале отношений, тогда как оценивание групповых различий относится к оценке степени изменения предусмотренного гипотезой исхода (= результата) при сравнении двух тождественных групп, чаще всего определяемой относительно таких условий, как "контроль/эксперимент" или "предварительное/итоговое тестирование".

Опубликованные исслед. различаются эксперим. планами и критериальными статистиками, приводимыми в описании результатов. Данные, относящиеся к связи между переменными, могут быть выражены в единицах корреляции произведения моментов Пирсона (r), квантилей 2-распределения или к.-л. др. стат., а данные о групповых различиях могут приводится с использованием t, F или др. стат. Поэтому прежде чем оценивать общую величину эффекта, нужно перейти от разных итоговых статистик, сообщаемых в анализируемых публикациях, к к.-л. общей мере. К наиболее часто используемым для этой цели мерам относятся корреляция произведения моментов Пирсона (применительно к корреляционным данным) и d-статистика (применительно к групповым различиям, оцениваемым с помощью t-критерия Стьюдента). Хотя далее речь пойдет именно об этих двух стат., М., конечно же, не ограничивается их применением. Что касается процедур преобразования с использованием разнообразных стат., следует обратиться к Розенталю. После того как сообщаемые в анализируемых публикациях стат. выражены в единых мерах, можно начинать анализ величины эффекта.

Корреляционные связи. Оценка величины эффекта между двумя изучаемыми переменными требует выполнения простых арифметических действий по следующей формуле:

.

Иначе говоря, вычисляется простое среднее арифметическое корреляций путем деления суммы приведенных в публикациях коэффициентов корреляции на число суммируемых коэффициентов (п). В качестве альтернативы использованию значений r можно усреднять значения величины Z Фишера:

.

После замены значений r соответствующими значениями Z (по формуле или с помощью специальной таблицы преобразований Фишера) сумма значений Z делится на число коэффициентов корреляции, включ. в анализ. Затем преобразуется обратно в соответствующее значение r, к-рое и сообщается в качестве итоговой стат. анализа.

В ходе дальнейшего оценивания величины эффекта может потребоваться учесть различия между исслед., касающиеся а) вариации объема выборок и б) использования различных способов или методик измерения. Так как две вышеописанные процедуры не предусматривают введение поправок или весов исходя из различий объема выборок, коэффициент корреляции (или Z Фишера) из исслед., проведенного на выборке из 10 чел., будет учитываться в них с тем же весом, что и др. коэффициент, полученный на выборке объемом в 500 человек. Признавая потенциальную важность этого типа вариабельности, Хантер с соавторами и Розенталь рекомендуют при проведении анализа величины эффекта использовать среднее арифметическое значений r, взвешенных соответственно различиям выборок, на к-рых они были получены. Вообще говоря, желательно сообщать данные о величине эффекта, основанные на средних арифметических и взвешенных, и невзвешенных величин.

Относительно измерения переменных, включаемых в М. величины эффекта, должно быть подтверждено, что на общем концептуальном или теорет. уровне выбранные для анализа переменные относятся к двум феноменам, сохраняющим свою идентичность во всех условиях проведения обозреваемых исслед. (напр., соц. класс и психол. благополучие). Но на уточненном и более конкретном уровне измерений соответствующие переменные могли измеряться с помощью разных способов или методик. Хотя этот источник потенциальных различий так или иначе учитывается в анализе общей значимости данных, его нужно принимать в расчет и при интерпретировании значения оценок величины эффекта. В тех областях исслед., где определенные измерительные шкалы были признаны стандартными и потому регулярно используются, эта проблема может не быть столь острой, как в тех областях, где нет общепринятых и широко используемых шкал. Однако именно в этих последних областях исслед. можно извлечь существенные выгоды из М., разумеется, при условии, что он отражает вдумчивый и внимательный подход к анализируемым данным.

Групповые различия. При оценивании групповых различий, определенных на основе t-критерия Стьюдента, проводится двухступенчатый анализ. Сначала, по данным каждого включенного в обзор исслед. определяется стандартизованная масштабно-инвариантная оценка предполагаемого эффекта. Так, напр., если проводится обзор 7 опубликованных исслед., стандартизованная оценка величины эффекта вычисляется для каждого из различных наборов групп, содержащихся в этих исслед. Эти наборы сопоставляемых групп чаще всего отображают ситуации типа "контроль/эксперимент" или "предварительное/итоговое тестирование". Для вычисления стандартизованной оценки величины эффекта (d) в каждом исслед. используется следующая формула:

.

В этом выражении абсолютная разность между средними величинами, приводимыми при каждом сопоставлении групп, делится на стандартное (среднее квадратическое) отклонение (SD). Используемое здесь SD - это стандартное отклонение, вычисленное либо по данным контрольной группы или предварительного тестирования, либо по данным объединенной выборки (или "генеральной совокупности"). После определения этих стандартизованных разностей между групповыми средними (d), каждой величине d придается положительное или отрицательное значение, в зависимости от дифференциального эффекта, зарегистрированного внутри этих двух типов групп. Если, как и предполагалось в гипотезе, величина группового среднего больше в экспериментальной группе или в итоговом тестировании, чем в контрольной группе или в предварительном тестировании, то соответствующая величина d для данного исслед. получает знак плюс. Если же наблюдается обратное, противоречащее исходной гипотезе, соотношение групповых средних, то соответствующая величина d получает знак минус. Когда все знаки определены, можно вычислить общую итоговую меру величины эффекта для объединяемых из разных исслед. данных. Эта вычислительная процедура представлена выражением, согласно к-рому сумма положительных и отрицательных значений d для каждого включенного в обзор исслед. делится на число исслед. (п). Эта итоговая статистика (среднее d) и будет отображать величину эффекта между двумя состояниями групп, измеренного в единицах стандартного отклонения.

Заключение Решающим условием расширения сферы использования метааналитических методов является доступность необходимой информ. о статистических критериях, используемых в обозреваемых исслед. Без сообщения в публикациях точных значений критериальных статистик (например, р, t, Z, d или r) и др. необходимой информ., перспективы применения М. будут весьма ограниченными. С увеличением доступности такой информ. будет продолжаться реальное расширение метааналитических исслед. и совершенствование его методологии.

По мере развития самого М. ряд проблем, считавшихся ранее препятствиями на пути использования его методов, привлек внимание исследователей. В результате были выявлены некоторые вызывающие сомнение аспекты М. и предприняты попытки (нужно сказать, успешные) найти решения этих проблем. В частности, М. справился с такими проблемами, как учет посредствующего воздействия др. переменных и применение в исслед. непараметрических методов. В настоящее время М. представляет собой динамическую, многоаспектную систему методов, позволяющую теоретически и методологически убедительным способом объединять в одно целое данные разных научных исслед.

Будущее М., по-видимому, зависит не столько от разрешения технических проблем, сколько от продвижения в понимании концептуальной базы М.

См. также Теория алгоритмически-эвристических процессов, Критерий хи-квадрат, Корреляционные методы, Теория обработки информации, Проверка нулевой гипотезы, Моделирование структурными уравнениями, Анализ временных рядов Д. Никинович Метапсихология (metapsychology) В буквальном смысле слова термин М. означает то, что находится "за" психологией или "позади" нее, так же как термин "метафизика" означает то, что находится "за" физикой или "позади" нее. Эти два значения связаны между собой, но не идентичны. То, что находится "за" психологией, обычно относится к сфере систематизации или теорет. рассмотрения вопросов и проблем, к-рые, строго говоря, не принадлежат к области психологии, но релевантны ей. Обычно это проблемы и вопросы общетеоретического или филос. характера, предполагаемые психологией.

В этом смысле термин М. наиболее часто используется в рамках психоанализа. З. Фрейд часто употреблял этот термин, вначале подразумевая, что психология, к-рой он занимался, имела дело с тем, что лежало за пределами сознательного опыта, а позднее - говоря об исходных посылках психоанализа. Рапопорт и Гилл расширили М. психоанализа и показали, что полное его понимание возможно лишь при комплексном подходе, учитывающем 5 перспектив: а) динамическую (постулирование психол. сил); б) экономическую (рассмотрение постулированных сил с т. зр. количества заключенной в них энергии); в) структурную (постулирование постоянных психол. структур); г) генетическую (описание происхождения и развития рассматриваемых психол. явлений); д) адаптивную (понимание психол. явлений в их связи со средой).

Вторая трактовка термина М. - т. е., как того, что находится "позади" психологии, - появилась позднее и связана с развитием философии науки. С этой т. зр. М. - всего лишь одна из многочисленных научных специализаций, нацеленная на раскрытие максимально полной совокупности принципов, исходных предпосылок, понятий и принимаемых без доказательств способов объяснения или объяснительных факторов, к-рые делают конкретную науку понятной. Чтобы "метанаука" в этом смысле слова заявила о себе, сама наука должна просуществовать какое-то время; тогда вслед за ней может прийти и "метанаука".

Разные трактовки термина М. использовал Ж. Политцер. Принимая на вооружение первую из рассмотренных выше трактовок, он обвинял "классическую психологию" в выходе за пределы ее собственного предмета - челов. действия, - для введения в оборот таких ошибочных метапсихологических понятий, как "материя души" или "внутренняя жизнь". В этом смысле термины М. и "метапсихологические" понятия (принципы и т. д.) имеют негативные, уничижительные коннотации, поскольку метапсихологические допущения понуждают психологию выходить за границы ее предмета и постулировать наличие таких фиктивных сущностей, как душа, ментальные процессы и факты сознания.

См. также Теоретическая психология А. Джорджи Метод антиципации (anticipation method) М. а. в вербальном научении - это распространенный способ предъявления стимульного материала в задачах на парные ассоц. и заучивание рядов.

При использовании М. а. в задачах на парные ассоц. испытуемым говорится, что они должны реагировать определенным образом всякий раз, когда предъявляется стимул. Несколько секунд спустя этот стимул и соответствующая ему реакция предъявляются совместно. Т. о. испытуемые чередуют антиципирующие реакции и получаемую обратную связь. Эти пары "стимул-реакция" предъявляются каждый раз в случайном порядке. Обучение продолжается до тех пор, пока не будет достигнут определенный критерий (например, правильное предвосхищение всех реакций). М. а. для задач на парные ассоц. отличается от метода проверки заучивания (также называемого методом задержки или вспоминания) для тех же задач, при к ром испытуемым показывают весь список пар прежде чем они будут давать ответы на каждый отдельный стимул.

При использовании М. а. в задачах на заучивание рядов испытуемым сначала предъявляется список элементов, к-рые предстоит заучить в соответствующем порядке. При последующих пробах испытуемые пытаются предвосхитить очередной пункт из списка за несколько секунд до его появления. В каждой пробе элементы списка предъявляются в неизменной последовательности. Обучение продолжается до тех пор пока не будет достигнут определенный критерий (как правило, безошибочное воспроизведение). М. а. для задач на заучивание рядов отличается от метода проверки заучивания для тех же задач, при к-ром предъявления испытуемым полного списка чередуются с попытками воспроизвести этот полный список.

Достоинство М. а. заключается в том, что он обеспечивает испытуемых немедленной обратной связью в отношении правильности их реакций. Однако его недостатком яв-ся то, что он объединяет научение и выполнение. Выполнение, как правило, оказывается несколько лучшим при использовании метода проверки заучивания, чем М. а., хотя это превосходство может зависеть от характеристик заучиваемого списка.

Pages:     | 1 |   ...   | 181 | 182 || 184 | 185 |   ...   | 506 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.