WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 13 |

Подводя итог исследованию адаптивных моделей для описания планов формирования производственных планов, можно сделать следующие выводы. Во-первых, такой тип формирования планов, скорее всего, не характерен для российских промышленных предприятий. Во-вторых, использование в адаптивных моделях спросовых переменных значительно расширило аналитические возможности, но также не дало устойчивых и логичных результатов. В-третьих, отрицательные коэффициенты моделей показывают, что предприятия, вероятно, не склонны верить отклонениям фактических изменений показателей и корректировать с учетом этого свои очередные планы выпуска. Они предпочитают сохранять прежнее направление своих намерений. «Мягкие» постановки адаптивных моделей подтвердили этот тезис: влияние на очередные планы предыдущих намерений всегда и существенно превосходило влияние фактических изменений выпуска. Вчетвертых, точности прогнозов всех видов спроса не оказывали значимого влияния на производственные планы предприятий. В-пятых, самой удачной оказалась адаптивная модель с включением точностей прогнозов всех факторов в состав независимых переменных. При этом значимое положительное влияние на производственные планы имели только неденежные виды спроса. Это объясняется тем, что в период оценки модели фактические изменения неденежных видов спроса имели желаемую для предприятий динамику, что и делало возможным ее учет при выработке следующих планов. А недостаточные объемы денежного спроса и выпуска не позволяли российским предприятиям адекватно учитывать их изменения при выработке очередных планов.

4.3. Обучения-на-ошибках модели формирования планов производства Модели обучения на ошибках предполагают, что изменения прогноза между двумя соседними опросами зависят от точности реализации прогноза в первом из опросов. В отличие от адаптивных моделей модели обучения на ошибках представляются более интересными в силу того обстоятельства, что в них в качестве зависимой переменной используются изменения прогнозов между двумя соседними опросами. В этих моделях используются обе производные переменные, введенные ранее: точность прогноза и изменение прогноза за два соседних опроса. Повторим, что переменная, характеризующая точность прогноза, может принимать значения: 1 – если фактические значения оказались лучше прогнозов, 2 – если прогноз совпал с фактом, 3 – если фактические значения оказались хуже прогнозов. Вторая переменная, описывающая изменение прогнозов за два соседних опроса, также трихотомическая: 1 – если прогноз стал более оптимистичным, 2 – если прогноз не изменился, 3 – если прогноз стал более пессимистичным.

Если справедливо предположение о том, что формирование прогнозов носит характер обучения на ошибках, то при лучших фактических изменениях по сравнению с предыдущими прогнозами очередные прогнозы должны быть пересмотрены в сторону улучшения. При обратной ситуации (прогноз оказался хуже факта) предприятия должны изменить прогнозы в сторону снижения (ухудшения). Тогда коэффициенты логлинейной модели с использованием порядковых данных конъюнктурных опросов должны быть положительны.

Кроме базовой модели формирования производственных планов, будут исследованы и комбинированные модели, в которых в качестве независимых переменных фигурируют точности прогнозов производства относительно последующих фактических изменений различных видов спросов.

Другое возможное направление развития таких моделей – использование в качестве независимых переменных «чистых» точностей прогнозов трех ви дов спроса, т.е. точностей относительно фактических реализаций того же показателя.

Начнем исследование моделей обучения на ошибках с базовой модели формирования (точнее – изменения) производственных планов:

(Q*t, Q*t-1) = f( Ф(Qt, Q*t-1) ).

где (Q*t, Q*t-1) – изменение направления производственных планов, зарегистрированных между двумя моментами (опросами) t и t-1; Ф(Qt, Q*t-1) – точность реализации первого из двух планов изменения производства Q*t-относительно фактических изменений производства Qt.

Эта модель обучения на ошибках достаточно хорошо и стабильно описывала изменения прогнозов выпуска в течение 1993–1996 гг. Затем качество подгонки модели стало ухудшаться: она все реже имела допустимые значения отношения правдоподобия, а с 1999 г. перестала быть приемлемой. Правда, в 2001 г. было зафиксировано три случая, когда величина отношения правдоподобия свидетельствовала о невозможности отвергнуть гипотезу об изменении соседних производственных планов под влиянием точности реализации первых из них. Однако наблюдаемый уровень значимости не слишком сильно превосходил порог 5%, чтобы можно было уверенно говорить о возврате российских промышленных предприятий к подобному принципу пересмотра своих планов. Коэффициенты модели были положительны и статистически значимы в течение всего периода мониторинга. Таким образом, предприятия последние годы, скоре всего, перестают учитывать точность прогнозов производства при корректировке своих дальнейших планов. Вместе с тем проверка гипотезы о независимости изменения планов от точности реализации первых из них показала, что это предположение не может быть принято. Наблюдаемый уровень значимости отношения правдоподобия логлинейной модели без линейного взаимодействия факторов во всех случаях был нулевым. А сравнение качества подгонки двух моделей показало обоснованность усложнения модели за счет линейного взаимодействия. Однако простого линейного взаимодействия последние годы стало недостаточно.

На следующем шаге анализа проверим гипотезы о зависимости пересмотра производственных планов от точности их реализации относительно фактических изменений трех отслеживаемых видов спроса по отдельности.

Зависимость от точности относительно платежеспособного спроса имеет вид:

(Q*t, Q*t-1) = f( Ф(Dt, Q*t-1) ).

Ф(Dt, Q*t-1) – точность реализации первых из двух планов изменения производства Q*t-1 относительно фактических изменений платежеспособного спроса Dt. Использование этой модели не может быть отвергнуто при описании механизма пересмотра планов производства в течение всего периода наблюдения за входящими в модель исходными признаками (1995– 2001 гг.). Вместе с тем качество подгонки этой модели не всегда было стабильным. Провалы наблюдаемого уровня значимости ниже 5% были зарегистрированы в конце 1998 г. – начале 1999 г. Вероятно, резкие и неожиданные изменения динамики продаж внесли тогда некоторую сумятицу в принципы формирования производственных планов в российской промышленности. Затем ситуация нормализовалась, и точность планов производства относительно продаж продукции за деньги стала по-прежнему учитываться при корректировке очередных планов выпуска.

Рассмотрим теперь модель, в которой изменение прогнозов выпуска может зависеть от двух точностей: от точности планов производства относительно последующих фактических изменений выпуска и точности относительно последующих изменений платежеспособного спроса:

(Q*t, Q*t-1) = f( Ф(Qt, Q*t-1), Ф(Dt, Q*t-1) ).

Такая модель имела приемлемое качество подгонки до конца 1997 г. В 1998 г. величина отношения правдоподобия чаще стала бывать слишком большой, чтобы не отвергнуть проверяемую модель для описания механизма изменения планов выпуска. В 1999 г. основания для того, чтобы не принимать эту модель стало еще больше. Но в 2000 г. и особенно в 2001 г. ситуация стала исправляться: наблюдаемый уровень значимости стал чаще превышать порог 5%. Правда, превышение это оказывалось не таким большим, как в 1993–1994 гг. Коэффициенты модели были всегда положительны и статистически значимы (кроме одного исключения). Этим исключением оказался 1994 г., когда коэффициенты точности относительно реализаций выпуска были статистически незначимы. Интересным оказалось соотношение коэффициентов модели. Точность планов выпуска относительно последующих реализаций спроса в подавляющем числе случаев оказывала более сильное влияние на пересмотр планов производства. Этот вывод свидетельствует в пользу «рыночности» мышления руководителей промышленных предприятий, для которых соответствие планов выпуска и изменений спроса является более сильным аргументом для пересмотра своих планов, нежели соответствие планов выпуска и их фактических изменений.

Влияние бартера на механизм пересмотра производственных планов предприятий можно исследовать при помощи модели, в которой в качестве независимой переменной используются точности планов выпуска относительно фактических изменений бартерного спроса:

(Q*t, Q*t-1) = f( Ф(Bt, Q*t-1) ).

Ф(Bt, Q*t-1) – точность реализации первых из двух планов изменения производства Q*t-1 относительно фактических изменений бартерного спроса Bt. Такая модель также имела хорошее качество подгонки и всегда положительные и статистически значимые коэффициенты. Таким образом, точность планов выпуска относительно бартера также учитывалась предприятиями при пересмотре своих планов. Добавление в эту модель еще и традиционной точности относительно самого выпуска дало интересные результаты. Во-первых, стабильным и высоким качество подгонки этой модели было с июля по октябрь 1998 г., когда бартер еще был важен для российской промышленности, а доля нормальных продаж еще не стала существенной. Во-вторых, затем до конца 2000 г. отклонение модели от эмпирических значений становится неприемлемо большим, и только в конце этого года (когда опросы зарегистрировали первый в последефолтный период абсолютный спад продаж за деньги) рассматриваемая модель опять не может быть отвергнута. В 2001 г. наша модель начинает «работать» в мае и в конце года, когда в российской промышленности опять возникают проблемы с платежеспособным спросом. Все коэффициенты модели были всегда положительны и всегда статистически значимы. При этом значение коэффициентов точности по бартеру было чаще выше, чем значение коэффициентов точности по выпуску. Конечно, бартер сложно назвать «хорошим» фактором для определения производственных планов, но все же этот ориентир лучше фактической динамики выпуска.

Аналогичная ситуация сложилась и при использовании в качестве независимой переменной точности планов выпуска относительно прочих неденежных видов спроса (векселя, зачеты и пр.):

(Q*t, Q*t-1) = f( Ф(Nt, Q*t-1) ), где Ф(Nt, Q*t-1) – точность реализации первых из двух планов изменения производства Q*t-1 относительно фактических изменений прочих неденежных видов спроса Nt. Подобная модель была оценена только для 2000– 2001 гг., поскольку мониторинг этого вида спроса начался с 2000 г. Качество подгонки модели было высоким и стабильным в 2000 г. и нестабильным в 2001 г. Коэффициенты модели были положительными и статистически значимыми в течение всего времени. Таким образом, гипотеза о том, что отклонения планов выпуска от фактических изменений объемов вексельных и зачетных сделок учитываются предприятиями при корректировке планов производства, не может быть отвергнута. Расширение состава независимых переменных за счет точности планов выпуска относительно фактического изменения выпуска привело к тому, что качество подгонки модели стало допустимым только в конце 2000 г. – начале 2001 г. Коэффициенты модели были по-прежнему положительны и статистически значимы в течение всего времени наблюдения. Как и в случае с другими видами спроса, влияние точности планов производства относительно фактического изменения рассматриваемого вида спроса на изменение планов выпуска было выше.

Исследование простых моделей обучения на ошибках с перекрестными точностями планов выпуска относительно фактических изменений спроса показало, что предприятия учитывают должным образом все виды спроса при корректировке своих планов выпуска. И учитывают отклонения от спросов сильнее, чем отклонения от фактического выпуска. Теперь закономерно поставить вопрос о том, какой вид спроса (отклонения от какого вида спроса) сильнее влияет на изменения планов выпуска российских промышленных предприятий. Ответ на такой вопрос можно получить, исследовав модель, где в качестве независимых переменных используются одновременно точности относительно всех трех видов спроса:

(Q*t, Q*t-1) = f( Ф(Dt, Q*t-1), Ф(Bt, Q*t-1), Ф(Nt, Q*t-1) ).

Поскольку одновременный мониторинг трех видов спроса велся только в течение 2000–2001 гг., а платежеспособного и бартерного – с августа 1998 г., то мы исследуем сначала модель с точностями планов выпуска относительно последних двух видов спроса:

(Q*t, Q*t-1) = f( Ф(Dt, Q*t-1), Ф(Bt, Q*t-1) ).

Качество подгонки такой модели было в большинстве случаев приемлемым, но не стабильным. Недопустимо большое расхождение эмпирических и модельных данных зарегистрировано в первой половине 2000 г. и начале 2001 г. Но тренд этого показателя свидетельствует о положительной динамике качества рассматриваемой модели. Коэффициенты модели были положительны и статистически значимы в течение всего периода. При этом точность прогнозов относительно платежеспособного спроса имела более сильное влияние на корректировку производственных планов, чем точность относительно бартера. И это преобладание было достаточно стабильным (см. рис. 6).

1.ТОЧНОСТЬ ПО ПРОДАЖАМ ЗА ДЕНЬГИ 1.1.0.0.0.ТОЧНОСТЬ ПО БАРТЕРУ 0.0.1/98 7/98 1/99 7/99 1/00 7/00 1/01 7/01 1/Рис. 6. Динамика коэффициентов болезни Теперь рассмотрим модель с участием всех трех видов спроса. Качество ее подгонки было стабильно высоким в течение всего периода. Наблюдаемый уровень значимости не опускался, как правило, ниже 0,9 (см. табл.

10). Всегда положительны и статистически значимы были только коэффициенты для точности планов выпуска относительно платежеспособного выпуска. Коэффициенты для бартерного спроса были положительны почти во всех случаях и статистически незначимы. Коэффициенты для прочих видов неденежного спроса были всегда положительны и статистически значимы в половине случаев. Таким образом, бартер, скорее всего, имеет самое слабое воздействие на корректировку производственных планов предприятий в последние два года. Промежуточное влияние имеют векселя и зачеты, самое сильное и стабильное в 2000–2001 гг. – платежеспособный спрос.

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |   ...   | 13 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.