WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |   ...   | 13 |

Значения отношения правдоподобия для экстраполяционных моделей, предполагающих формирование производственных планов под влиянием только платежеспособного или только бартерного спроса, выглядят предпочтительней. Экстраполяционная модель, в которой прогнозы производства определяются фактическими изменениями платежеспособного спроса, является более «прогрессивной» для предприятий в переходных экономиках. В этом случае предприятия планируют свой выпуск, экстраполируя предыдущие тенденции изменения спроса. Указанная модель проверялась для периода с июля 1995 г. по декабрь 2001 г. Самым высоким качество подгонки этой модели было до начала 1997 г. В 1997 г. расхождения стали недопустимо велики: модель оказалась приемлемой лишь в 3 случаях из 12.

ПО ВЫПУСКУ ПО БАРТЕРНОМУ СПРОСУ ПО ПЛАТЕЖЕСПОСОБНОМУ СПРОСУ 01.93 01.94 01.95 01.96 01.97 01.98 01.99 01.00 01.01 01.Рис. 1. Значение отношения правдоподобия (G2) для экстраполяционных моделей формирования планов выпуска Затем качество подгонки возросло, но не было стабильным. Лишь в 2000 г. «спросовая» экстраполяционная модель стала лучше описывать формирование планов производства в российской промышленности. В г. качество подгонки такой модели опять снизилось. Экстраполяционная модель с фактическими изменениями бартерного спроса в качестве независимых переменных дополняет предыдущую модель. Ориентация на бартерный спрос при формировании производственных планов свидетельствует о нерыночных позициях производителей. Как показали расчеты, качество подгонки модели с бартерным спросом (без других независимых переменных) находится на одном уровне с моделью, включающей изменения только платежеспособного спроса.

Рассмотрим теперь коэффициенты моделей. В классической экстраполяционной модели (производственные планы определяются только изменениями производства) всегда положительными и статистически значимыми были только коэффициенты у Q t (фактические изменения выпуска, непосредственно предшествующие формированию планов). Коэффициенты Q*t-могли быть как положительными, так и отрицательными, и были статистически значимы лишь в одной трети случаев. При этом значение первых из рассмотренных коэффициентов были всегда выше. Таким образом, в рамках классической экстраполяционной модели можно говорить о том, что планы выпуска формируются в основном под воздействием фактических изменений производства, регистрируемых в момент определения планов.

Ситуация с коэффициентами в экстраполяционной модели, предполагающей формирование производственных планов на основе фактических изменений платежеспособного спроса (Q*t = f( Dt, Dt-1 )), аналогична предыдущей модели. Всегда положительны и статистически значимы были коэффициенты последних изменений спроса (Dt). Коэффициенты предшествующих изменений (Dt-1) были значимы лишь в 34% случаев и имели иногда отрицательные значения. Т.е. и здесь лишь самые последние изменения платежеспособного спроса учитываются предприятиями при формировании своих планов выпуска.

В экстраполяционной модели с бартерным спросом (Q*t = f( B t, B t-1 )) коэффициенты последних изменений (Bt) были статистически значимы и положительны только до марта 1999 г. Затем они становятся стабильно незначимыми и иногда – отрицательными. Предшествующие изменения бартерного спроса очень редко статистически значимо влияли на планы предприятий и в течение всего периода наблюдений встречались отрицательные знаки. Это свидетельствует о том, что бартер оказывал влияние на планы выпуска только до начала нормального (за счет платежеспособного спроса) роста производства. С того момента как предприятия поняли, что продажи за деньги начинают вытеснять бартер, они перестали принимать его во внимание. Это произошло, как показывают расчеты по данным конъюнктурных опросов, именно в марте 1999 г. Исключение из модели линейного взаимодействия Q*t и B оказалось оправданным в большинстве случаев.

t-Статистическая значимость коэффициентов Bt сохранилась до марта 1999 г.

Исследование модели с прочими видами неденежного спроса в качестве факторов, определяющих формирование планов выпуска, приводит к похожим выводам. Правда, мониторинг неденежных видов спроса (векселей, зачетов и пр.) начался только в феврале 2000 г. и поэтому расчеты могут быть сделаны только для относительно благоприятного для российской промышленности периода. Качество подгонки этой модели было достаточно хорошим (см. табл. 4). Но коэффициенты модели были чаще статисти чески незначимы и имели отрицательные знаки для обоих независимых переменных. По этой причине модель была сначала упрощена за счет исключения взаимодействия Q*t и Nt-1. Качество подгонки осталось допустимым в абсолютном большинстве случаев, а коэффициенты стали положительны и часто статистически значимы после сентября 2000 г. Поскольку прирост величины отношения правдоподобия был незначительным, то упрощенная модель является предпочтительной. Дальнейшее сокращение модели за счет исключения взаимодействия Q*t и Nt оказалось допустимым с точки зрения сохранения качества подгонки, но нецелесообразным после октября 2000 г. с точки зрения прироста величины G2. Именно осенью 2000 г.

российская промышленность впервые после дефолта 1998 г. столкнулась со значительными сбытовыми проблемами и, вновь прибегнув к вексельным и зачетным сделкам, решила, вероятно, учитывать при планировании выпуска их и в дальнейшем. На всякий случай. И эти случаи не замедлили в дальнейшем наступить.

Таблица Характеристики влияния фактических изменений прочих неденежных видов спроса на планы выпуска предприятий Коэффициенты модели Характеристики качества подгонки модели Nt-Дата Nt G2 Df Sig SE SE 2/00 7.4064 14 0.9179 0.4460 0.1396 0.0734 0.3/00 23.3534 14 0.0548 0.0609 0.1617 0.2459 0.4/00 17.4907 14 0.2310 0.1278 0.1449 0.2819 0.5/00 25.8103 14 0.0274 -0.1917 0.1437 0.1516 0.6/00 16.2327 14 0.2994 0.1815 0.1476 -0.0839 0.7/00 14.1415 14 0.4392 0.1608 0.1315 -0.0182 0.8/00 5.8333 14 0.9705 -0.0261 0.1585 0.0998 0.9/00 15.9081 14 0.3190 -0.1209 0.1369 0.1890 0.10/00 15.2383 14 0.3621 0.4501 0.1633 -0.1089 0.11/00 12.3757 14 0.5762 0.0088 0.1434 0.2180 0.12/00 10.8186 14 0.7002 0.3879 0.1413 0.0430 0.1/01 11.0362 14 0.6832 0.2119 0.1458 0.1157 0.2/01 8.5911 14 0.8563 0.5537 0.1584 -0.0662 0.3/01 10.2381 14 0.7446 -0.1019 0.1415 0.2570 0.4/01 19.3053 14 0.1536 0.0817 0.1335 0.1191 0.Таблица 4 продолжение Коэффициенты модели Характеристики качества подгонки модели Nt-Дата Nt G2 Df Sig SE SE 5/01 19.7029 14 0.1398 0.2370 0.1557 0.0731 0.6/01 8.7091 14 0.8492 0.2420 0.1617 0.0585 0.7/01 14.1627 14 0.4377 0.4357 0.1535 -0.1403 0.8/01 17.9311 14 0.2099 0.0299 0.1426 0.0860 0.9/01 17.5118 14 0.2299 0.3191 0.1772 0.0278 0.10/01 17.8414 14 0.2141 0.2914 0.1448 0.0815 0.11/01 17.9000 14 0.2114 0.0821 0.1402 -0.1445 0.12/01 13.4425 14 0.4920 0.1296 0.1672 0.2286 0.Примечание. В таблице приведены: G2 – величина отношения правдоподобия; df – число степеней свободы; Sig – наблюдаемый уровень значимости; коэффициенты, оценивающие линейную связь (ассоциацию) рангов каждого из факторов с планами выпуска, и стандартные ошибки (SE).

Рассмотрим теперь комбинированные экстраполяционные модели, в которых прогнозы изменения выпуска могут определяться предшествующими фактическими изменениями более чем одного показателя из рассмотренных выше. Сначала остановимся на модели, в которой используются фактические изменения выпуска и платежеспособного спроса в двух предшествующих точках:

Q*t = f( Q t, Q t-1, D t, D t-1).

Качество подгонки этой модели, в которую были включены двухуровневые взаимодействия всех факторов с зависимой переменной и четырехуровневое взаимодействие всех независимых переменных, оказалось очень высоким. Величина отношения правдоподобия стабильно не опускалось ниже 0.9. Статистически значимы были лишь коэффициенты модели, относящиеся к последним фактическим изменениям выпуска и платежеспособного спроса. Соотношение коэффициентов выпуска и платежеспособного спроса, свидетельствует об изменчивости влияния этих двух факторов на планы выпуска (см. рис. 2). До середины 1998 г. усиливалось воздействие платежеспособного спроса, затем его влияние начинает ослабевать и со второй половины 1999 г. предприятия предпочитают в своих экстраполяционных планах опираться на предыдущие изменения выпуска. На первый взгляд такая ситуация выглядит парадоксальной. Получается, что во времена свертывания продаж за деньги предприятия предпочитали в своих прогнозах опираться на предыдущие изменения платежеспособного спроса, объемы которого были невелики. А после начала роста спроса они отказываются от этого и начинают все сильнее опираться в своих экстраполяционных прогнозах на предыдущие изменения выпуска. Однако этому можно предложить такое объяснение. Отсутствие достаточных объемов нормального денежного спроса и высокая бартеризация оборота заставляла предприятия «с трепетом» относиться к любым колебаниям продаж за деньги и принимать во внимание их малейшее изменение, в том числе – при выработке своих производственных планов. Поэтому к середине 1998 г., когда доля бартера была особенно велика, учет изменений платежеспособного спроса достиг максимума. Затем ситуация стала кардинально меняться.

Платежеспособный спрос начал устойчиво вытеснять все другие виды продаж, и поэтому необходимость в столь «нежном» обращении с платежеспособным спросом постепенно отпадает. Предприятия в рамках экстраполяционной модели могут позволить себе пролонгировать фактические изменения своего выпуска, благо продажи растут более или менее устойчиво.

0.0.ВЫПУСК 0.0.0.0.0.0.СПРОС 0.1/95 1/96 1/97 1/98 1/99 1/00 1/01 1/Рис. 2. Динамика коэффициентов модели Возможное упрощение модели за счет разбиения четырехуровневого взаимодействия на два двухуровневых снижало качество подгонки для периода 1997–2001 гг., но не меняло уровень влияния предшествующих изменений на прогнозы. Самое сильное влияние имели фактические изменения, непосредственно предшествующие моменту формирования прогнозов. И соотношение влияния двух факторов имело ту же динамику: до середины 1998 г. нарастало воздействие платежеспособного спроса, после чего начинала увеличиваться степень влияния фактических изменений выпуска.

Статистически незначимое влияние на прогнозы удаленных во времени фактических изменений выпуска и спроса (Q t-1, и D t-1) дает основания для еще одной попытки упрощения экстраполяционной модели формирования производственных планов – за счет полного исключения вышеупомянутых факторов. Т.е. исследовать зависимость планов выпуска только от непосредственно предшествующих им фактических изменений выпуска и спроса:

Q*t = f( Qt, Dt, ).

Такая модель имела хорошее качество подгонки только в период 1993– 1996 гг., затем наблюдаемый уровень значимости стал стабильно ниже 5%.

Коэффициенты модели были положительны и статистически значимы в течение всего периода мониторинга показателей (1993–2001 гг.). При этом более сильное влияние платежеспособного спроса было зафиксировано только с октября 1996 г. по сентябрь 1998 г. В другие периоды предприятия в рамках такой «укороченной» двухфакторной экстраполяционной модели строили свои производственные планы в первую очередь на предшествующих изменениях выпуска.

Таким образом, исследование в рамках экстраполяционной модели влияния на планы выпуска фактических изменений производства и платежеспособного спроса показало, что во времена высокой бартеризации промышленные предприятия старались улавливать малейшее «дуновение» платежеспособного спроса, подобно тому, как парусники при штиле ловят хоть какой-нибудь ветерок. Но как только продажи за деньги становятся значительными и стабильными (ветер крепчает), необходимость в безоглядном следовании за спросом снижается, и во внимание все больше принимается динамика собственного производства (корабль начинает двигаться по своему курсу). Но сам спрос отнюдь не отбрасывается, его предшествующие изменения имеют положительное и статистически значимое влияние на производственные планы. Просто это влияние слабее влияния аналогичных изменений выпуска.

Особый интерес, по нашему мнению, представляет изучение в рамках экстраполяционной модели влияния на планы выпуска фактических изменений основных видов спроса на промышленную продукцию. Динамика платежеспособного спроса отслеживается опросами с апреля 1994 г., динамика бартера – с августа 1998 г., динамика векселей, зачетов и пр. – с февраля 2000 г. Это обстоятельство позволяет исследовать влияние двух видов спроса в течение наиболее длительного периода времени, влияние всех трех видов спроса на планы выпуска может быть изучено лишь в течение двух последних лет.

Как показали оценки логлинейных моделей, из трех видов спроса приоритетное влияние на производственные планы российских промышленных предприятий имеет платежеспособный спрос. Первая модель с участием только платежеспособного спроса и бартера:

Q*t = f( Dt, Dt-1, Bt, Bt-1) имела очень высокое и стабильное качество подгонки (величина отношения правдоподобия имела максимальные значения). Коэффициенты модели были всегда положительны и статистически значимы только для самых близких (к моменту формирования планов) изменений платежеспособного спроса. Предшествующие изменения этого спроса имели иногда отрицательные коэффициенты и были статистически значимы менее чем в половине случаев. У бартерного спроса отрицательные коэффициенты встречались чаще, а статистическая значимость коэффициентов – реже.

Соотношение коэффициентов платежеспособного и бартерного спроса также свидетельствовало в пользу того, что планы выпуска предприятий, скорее всего, определялись предшествующими изменениями денежных продаж, а не товарообменных операций (см. рис. 3).

0.0.Dt 0.0.0.0.0.0.0.Dt-1 Bt -0.1/98 7/98 1/99 7/99 1/00 7/00 1/01 7/01 1/Рис. 3. Динамика коэффициентов модели Статистическая незначимость коэффициентов у более «отдаленных» изменений спросов показывает, что эти факторы могут быть исключены из модели. Тогда мы получаем модель, в которой производственные планы предприятий определяются только непосредственно предшествующими изменениями двух видов спроса. Качество подгонки такой модели оказалось столь же высоким что и предыдущей. Наблюдаемый уровень значимости сохранил максимальные значения. Коэффициенты модели были всегда положительны и статистически значимы только для платежеспособного спроса. Бартерный спрос имел положительные коэффициенты, которые со временем утрачивали статистическую значимость. Преимущественное влияние на производственные планы платежеспособного спроса сохранилось.

Pages:     | 1 | 2 || 4 | 5 |   ...   | 13 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.