WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 ||

ляется термоэдс изолирующей (точнее, полупроводникоСвободная энергия магнонов как в АФ-состоянии вой) фазы. Если проводимость собственная, то термо(GA), так и в ФМ-состоянии (GF) дается выражением эдс может быть как положительной, так и отрицательной в зависимости от знака носителей заряда (e или h), q G = T ln 1 - exp. (15) которые вносят в доминирующий вклад T ee + hh Частоты магнонов в АФ- и ФМ-фазах даются соответ =. (13) e + h ственно выражениями (вывод последнего приведен в [3]) Следовательно, он может быть отрицательным, если q = |J| 1 - q, J = IS2z, доминируют электроны проводимости.

При повышенных температурах состояние с разделенными фазами плавится, и все дырки, запертые ранее внуq = exp(iq), (16) z три ФМ-фазы, распределяются однородно по кристаллу.

Поэтому высокотемпературная термоэдс положительна. zt E q =(-|J| + Jde)(1 - q), Jde = k fk, (17) Температурная зависимость термоэдс должна быть 2SN воспроизводимой в условиях термодинамически равногде fk — фермионная функция распределения при T = 0.

весного разделения фаз. Если исходить из такого сценаБудет рассмотрен случай TC/S T TC, в котором рия и из экспериментального факта воспроизводимости все еще применимо спин-волновое приближение, если термоэдс, то разделение фаз в манганитах лантана должвыполнено условие S 1. Из (15), (16) получается но быть термодинамически равновесным.

следующая оценка для свободной энергии АФ-магнонов:

Наконец, разделение фаз приводит к одному из возможных каналов колоссального магнитосопротивления |J| GA = TN ln -. (18) в этих материалах. Из полученных выше результатов T следует, что если ФМ-фаза неосновная, то она может стать основной под действием магнитного поля. Дейст- Свободная энергия ФМ-магнонов отличается от (18) заменой |J| на (Jde -|J|).

вительно, согласно (12), параметр X убывает с ростом Кроме того, в температурно-зависящую часть свополя. Как следует из (10), размер капли возрастает с бодной энергии входит вклад, пропорциональный энуменьшением X. Следовательно, согласно (12), объем тропии перераспределения NO атомов кислорода по ФМ-капли растет с усилением поля. Из той же формулы NF = N/(1 + X) элементарным ячейкам, из которых следует, что и полный объем ФМ-фазы растет с полем.

Поэтому, начиная с некоторого критического значе- состоит ФМ-фаза, ния поля, ферромагнитные капли приходят в контакт друг с другом, и происходит протекание s-электронной FO = TNF vO ln vO +(1-vO) ln(1 - vO), жидкости.

NO Альтернативой протеканию мог бы быть скачкообразvO =. (19) ный переход из фазово-разделенного в однородное выNF сокопроводящее состояние. Вызванный полем переход Однако он имеет порядок NO/N 1 по сравнению со из изолирующего в высокопроводящее состояние можно свободной энергией магнонов и потому слабо влияет на рассматривать как проявление колоссального магнитосорезультаты вычислений.

противления.

При низких температурах можно рассматривать температурно-зависящую часть свободной энергии как малую поправку к энергии основного состояния, и тогда 3. Переход из изолирующего с учетом того, что Et минимальна при X = X(0), в высокопроводящее состояние находим, что полная свободная энергия системы при подъеме температуры F = Et + Fm + FO минимальна при Далее будет исследовано разделение фаз при конечных d(Fm +FO)/dX X=X(0) температурах. Рассматривается только спин-волновая X(T ) =X(0) -. (20) d2Et/dX2 X=X(0) область, и s-d-взаимодействие считается соответствуюФизика твердого тела, 1998, том 40, № Разделение фаз в оксидных вырожденных магнитных полупроводниках Сучетом (14) и (18) имеет место равенство [8] P. De Gennes. Phys. Rev. 118, 1, 141 (1960).

[9] R. Mahendiran, S. Tiwary, A. Raychaudhura et al. Phys. Rev.

dFm TN |J| B54, 23, R9604 (1996).

= 1 + ln, [10] A. Asamitsu, Y. Moritomo, Y. Tokura. Phys. Rev. B53, 12, dX (1 + X)2 Jde(n)(1 + X) -|J| R2952 (1996).

n=nO +nD. (21) При написании (21) учтено, что из-за относительной малости концентрации носителей заряда в (17) можно положить k 1 и что концентрация носителей в ФМобластях в 1 + X раз выше средней по кристаллу.

Таким образом, при заданных параметрах системы ее поведение с ростом температуры определяется X(0), который можно найти путем численных расчетов, а для ориентировочных оценок можно использовать (12).

Тогда из (12), (21) следует, что знак (21) не зависит от концентрации носителей и, вообще говоря, может быть как положительным, так и отрицательным.

Если dFm/dX положительна, тогда X убывает при уменьшении температуры. Следовательно, ФМ-часть кристалла растет с температурой. Согласно (10), размер ФМ-капли увеличивается при уменьшении X. Рост одновременно VF и R может привести к появлению контактов между каплями, т. е. к температурно-индуцированной перколяции ФМ-упорядочения и электронной жидкости.

Иными словами, подъем температуры может вызвать переход из изолирующего в высокопроводящее состояние без разрушения разделения фаз, а только с радикальным изменением топологии двухфазного состояния.

Одновременно с этим переходом, может измениться знак термоэдс: если он был аномальным до перехода (см. раздел 3), то после перехода он может стать нормальным, соответствующим дыркам как основным носителям заряда в манганитах.

Если же dFm/dX отрицательна и X(T) растет с температурой, то объем ФМ-части кристалла уменьшается, а объем АФ-части растет. Следовательно, если первоначально кристалл был в высокопроводящем двухфазном состоянии, он может перейти в изолирующее состояние.

При дальнейшем росте температуры, когда двухфазное состояние разрушится, кристалл должен опять стать высокопроводящим.

Эта работа поддержана грантом 97-1076(072) Миннауки РФ и грантом 98-02-16148 РФФИ.

Список литературы [1] Э.Л. Нагаев. Письма в ЖЭТФ 16, 10, 558 (1972); ЖЭТФ 66, 6, 2105 (1974).

[2] E.L. Nagaev. Physica C222, 3–4, 324 (1994).

[3] Э.Л. Нагаев. Физика магнитных полупроводников. Наука, М. (1979).

[4] Э.Л. Нагаев. УФН 165, 5, 529 (1995).

[5] E. Wollan, W. Koehler. Phys. Rev. 100, 2, 545 (1955).

[6] R. Kremer, E. Sigmund, V. Hizhnyakov. Z. Phys. B86, (1992); 91, 169 (1993).

[7] Э.Л. Нагаев. УФН. 166, 8, 833 (1966).

8 Физика твердого тела, 1998, том 40, №

Pages:     | 1 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.