Pages:     | 1 | 2 ||

Accordingly, the increase of T is expected to give no Figure 4. RWL (a) measured for SQD at hIR = 1.240 eV, further increase of IQD. Consequently, the higher value of hex = 1.471 eV, P0 = 200 nW, PIR = 100 W for a number of single at low T is, the less T -induced increase of IQD is T s. Isingle and Isingle (b) measured for SQD at hex = 1.471 eV, WL QD predicted, which is nicely confirmed by the data shown in P0 = 200 nW, at different T s. single and dual (c) measured Fig. 3, b. These experimental findings are consistent with for SQD at hIR = 1.240 eV, hex = 1.471 eV, P0 = 200 nW, the temperature-induced behaviour of the Isingle revealed QD PIR = 100 W for a number of T s. The inset in (b) shows in ordinary (macro)-PL measurements: Isingle for low dot Isingle measured for SQD at hex = 1.410 eV, P0 = 17 W at QD QD density revealed an increase by 2 times as T was increased different T s.

, 2005, 47, . 2072 E.S. Moskalenko, K.F. Karlsson, V. Donchev, P.O. Holtz, W.V. Schoenfeld, P.M. Petroff 4. Conclusion An additional IR laser considerably quenches the QD PL signal. This is explained in terms of screening of the internal electric field by the extra holes created in the sample as a result of the IR excitation. The quenching effect progressively vanishes with increasing temperature as well as dot density. These observations are due to a considerably improved QDs collection efficiency at which the effect of electric field on the carrier transport in the plane of the WL becomes less important. The observed effects could be widely used in practice to effectively tune the QDs collection efficiency and manipulating the light emission intensity in QD-based optoelectronic devices.

Figure 5. RQD measured for sample spots with different dot density at T = 5K, hIR = 1.240 eV, hex = 1.471 eV, P0 = 200 nW, single PIR = 100 Wplotted for a number of MQDs. The inset shows References single RQD for SQDplotted for a number of SQD measured at different [1] L. Jacak, P. Hawrylak, A. Wojs. Quantum Dots. SpringerT s (taken from Fig. 4, c).

Verlag, Berlin (1998). 176 p.

[2] D. Gammon, D.G. Steel. Physics Today 55, 10, 36 (2002).

[3] L. Harris, D.J. Mawbray, M.S. Skolnick, M. Hopkinson, from 20 to 90 K, while no increase was registered for the G. Hill. Appl. Phys. Lett. 73, 7, 969 (1998).

case of high dot density structures [14].

[4] S. Maimon, E. Finkman, G. Bahir, S.E. Schacham, J.M. Garcia, The changes in the temperature evolution of the RQD P.M. Petroff. Appl. Phys. Lett. 73, 14, 2003 (1998).

[5] J.J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm, registered for the case of MQDs 1 and MQDs 2 with G. Abstreiter. Appl. Phys. Lett. 73, 18, 2618 (1998).

respect to the case of SQD (Fig. 3, a) can also be explained [6] D. Bimberg, M. Grundmann, N.N. Ledentsov. Quantum Dot satisfactorily within the model proposed. In fact, with Heterostructures. Willey, London (1999). 328 p.

increasing collection efficiency, the role of the internal field [7] K.H. Schmidt, G. Medeiros-Ribeiro, J.M. Garcia, P.M. Petroff.

becomes less important. This explains the essentially higher Appl. Phys. Lett. 70, 13, 27 (1997); J.M. Garcia, T. Mankad, values of RQDs of 0.5 and 0.9 measured at T = 5K for P.O. Holtz, P.J. Wellman, P.M. Petroff. Appl. Phys. Lett. 72, 24, MQDs 1 and MQDs 2, respectively compare to that of 0.3172 (1998); J.M. Garcia, G. Medeiros-Ribeiro, K. Schmidt, for the case of SQD (Fig. 3, a). In addition, the higher the T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff. Appl.

collection efficiency is at T = 5 K, the lower temperature Phys. Lett. 71, 14, 2014 (1997).

is needed to increase its value even more up to the value [8] R. Heitz, M. Veit, N.N. Ledentsov, A. Hoffmann, D. Bimberg, at which the role of F on the carrier transport diminishes. V.M. Ustinov, P.S. Kopev, Zh.I. Alferov. Phys. Rev. B 56, 16, 10 435 (1997).

This explains satisfactorily the T values of 30 and 10 K, at [9] A.W.E. Minnaert, A.Yu. Silov, W. van der Vleuten, which RQD becomes equal to 1 for MQDs 1 and MQDs 2, J.E.M. Haverkort, J.H. Wolter. Phys. Rev. B 63, 7, respectively (Fig. 3, a).

(2001); F. Findeis, A. Zrenner, G. Bhm, G. Abstreiter. Phys.

We finally note that the increase of the RQD up to 1, Rev. B 61, 16, R10 579 (2000); R. Heitz, I. Mukhametzhanov, measured for the SQD at different T s, was interpreted in O. Stier, A. Madhukar, D. Bimberg. Phys. Rev. Lett. 83, 22, terms of a temperatureinduced increase of the parameter 4654 (1999).

single(dual). To verify this interpretation we performed [10] B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, another experiment with the purpose to increase the QDs Y. Arakawa. Phys. Rev. B 54, 16, 11 532 (1996); U. Bockelcollection efficiency even at low T, namely by selecting man, T. Egeler. Phys. Rev. B 46, 23, 15 574 (1992); A. Rack, sample positions with different dot densities. If the R. Wetzler, A. Wacker, E. Schll. Phys. Rev. B 66, 16, 165 suggested model is correct, a similar effect of single(dual) (2002); S. Raymond, K. Hinzer, S. Fafard, J.L. Merz. Phys.

Rev. B 61, 24, 16 331 (2000).

on RQD should be detected in the latter case as well. Fig. [11] P.P. Paskov, P.O. Holtz, B. Monemar, J.M. Garcia, shows the ratio RQD plotted as a function of single for single W.V. Schoenfeld, P.M. Petroff. Appl. Phys. Lett. 77, 6, different dot density spots of the structure (MQDs) and for (2000).

single the SQD (SQD ) (inset in Fig. 5). The different values [12] Y. Toda, O. Moriwaki, M. Nishioka, Y. Arakawa. Phys. Rev.

single Lett. 82, 20, 4114 (1999).

of SQD were evaluated for different T (from Fig. 4, c), [13] A.F.G. Monte, J.J. Finley, A.D. Ashmore, A.M. Fox, D.J. Mowas explained above. The two dependencies behave in a bray, M.S. Skolnick, M. Hopkinson. J. Appl. Phys. 93, 6, similar way. The progressive increase of RQD with an (2003).

single single increasing MQDs or SQD is recorded (Fig. 5 or inset in [14] C. Lobo, R. Leon, S. Marcinkeviius, W. Yang, P. Sercel, Fig. 5, respectively), a fact which strongly supports the X.Z. Liao, J. Zou, D.J.H. Cockayne. Phys. Rev. B 60, 24, model proposed. 16 647 (1999).

, 2005, 47, . Effect of the electric field on the carrier collection efficiency of InAs quantum dots [15] M.M. Sobolev, A.R. Kovsh, V.M. Ustinov, A.Yu. Egorov, A.E. Zhukov, M.V. Maksimov, N.N. Ledentsov. Semicond. 31, 10, 1074 (1997).

[16] S. Marcinkeviius, J. Siegert, R. Leon, B. echaviius, B. Magness, W. Taylor, C. Lobo. Phys. Rev. B 66, 23, 235 (2002).

[17] S. Mnard, J. Beerens, D. Morris, V. Aimez, J. Beauvais, S. Fafard, J. Vac. Sci. Technol. B 20, 4, 1501 (2002).

[18] S. Marcinkeviius, A. Gaarder, R. Leon. Phys. Rev. B 64, 11, 115 307 (2001).

[19] S. Marcinkeviius, R. Leon. Appl. Phys. Lett. 76, 17, (2000).

[20] P.W. Fry, J.J. Finley, L.R. Wilson, A. Lematre, D.J. Mowbray, M.S. Skolnick, M. Hopkinson, G. Hill, J.C. Clark. Appl. Phys.

Lett. 77, 26, 4344 (2000).

[21] E.S. Moskalenko, V. Donchev, K.F. Karlsson, P.O. Holtz, B. Monemar, W.V. Schoenfeld, J.M. Garcia, P.M. Petroff. Phys.

Rev. B 68, 15, 155 317 (2003).

[22] P. Silverberg, P. Omling, L. Samuelson. Appl. Phys. Lett. 52, 20, 1689 (1988).

[23] D.A. Mazurenko, A.V. Scherbakov, A.V. Akimov, A.J. Kent, M. Henini. Semicond. Sci. Technol. 14, 12, 1132 (1999).

[24] M. Sugisaki, H.W. Ren, K. Nishi, Y. Masumoto. Phys. Rev.

Lett. 86, 21, 4883 (2001).

[25] E.S. Moskalenko, K.F. Karlsson, P.O. Holtz, B. Monemar, W.V. Schoenfeld, J.M. Garcia, P.M. Petroff. Phys. Rev. B 64, 8, 085 302 (2001).

[26] A.V. Akimov, V.V. Krivolapchuk, N.K. Poletaev, V.G. Shofman. Semicond. 27, 2, 171 (1993).

[27] K.F. Karlsson, E.S. Moskalenko, P.O. Holtz, B. Monemar, W.V. Schoenfeld, J.M. Garcia, P.M. Petroff. Appl. Phys. Lett.

78, 19, 2952 (2001).

[28] H.D. Robinson, B.B. Goldberg. Phys. Rev. B 61, 8, R(2000).

[29] J. Seufert, R. Weigand, G. Bacher, T. Kummell, A. Forchel, K. Leonardi, D. Hommel. Appl. Phys. Lett. 76, 14, (2000).

[30] V.N. Abakumov, V.I. Perel, I.N. Yassievich. Nonradiative Recombination in Semiconductors. North-Holland, Amsterdam (1991). 320 p.

, 2005, 47, .

Pages:     | 1 | 2 ||

2011 www.dissers.ru -

, .
, , , , 1-2 .