WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |   ...   | 17 |

данного учебника). Цитоплазма клеток наружного слоя, разрыхляясь, образует губчатую сеть, которая называется краевой зоной, или вуалью. Клетки, образовавшие губчатую сеть краевой зоны, называются спонгиобластами. Из спонгиобластов развиваются элементы нейроглии: астроциты как спонгиобласты, так и главным образом будущие нервные клетки – нейробласты. На этих стадиях нейробласты отличаются по величине своих ядер. Они значительно более крупные у нейробластов, чем у спонгиобластов. Клетки внутреннего камбиального слоя, удлиняясь, а затем принимая характерную для призматического эпителия форму, превращаются в эпендиму, которая выстилает просвет спинномозгового канала и желудочков головного мозга. На своей апикальной (верхушечной) поверхности клетки эпендимы несут мерцательные реснички. Спонгиобласты и нейробласты среднего слоя спинного мозга составляют зачаток серого вещества. Отростки нейробластов, передвигающиеся в наружный слой, дифференцируются в проводящие пути. Эти отростки окружаются развивающимися из спонгиобластов астроцитами и олигодендроцитами и образуют зачаток белого вещества спинного мозга.

Тело будущей нервной клетки покрывается снаружи глиальными клетками, как бы особой капсулой. Эти клетки получили название клеток – сателлитов.

Также сателлиты образуют капсулу вегетативных нейробластов. Отростки нейробласта сопровождаются также особыми вспомогательными глиальными элементами – так называемыми шванновскими клетками. Последние представляют собой разновидность глии, которая закладывается вместе с невробластами в ганглионарной пластинке.

Шванновские клетки – разновидность клеток нейроглии, помогающих в образовании мякотной миелиновой оболочки у нейронов.

Нервная клетка будущих передних рогов спинного мозга посылает свой аксон через передние корешки к развивающимся мышцам или железистым клеткам. В нервной трубке в задних рогах одновременно развиваются будущие ассоциативные нервные клетки, отличающиеся короткими нервными отростками.

Протоплазма растущих аксонов нейробластов обнаруживает способность к росту, амебоидному движению и активному «самостоятельному» передвижению между другими тканевыми элементами. На свой вершине растущий аксон несёт конусовидное утолщение – колбу роста. Изучение нейробластов в условиях прижизненных наблюдений тканевых культур и при помощи электронной оптики показало, что аксон растёт по межклеточным промежуткам в виде тонкого протоплазменного тяжа. Вскоре у периферических нервных волокон появляются мякотные, состоящие из миелина, оболочки, которые образуются в процессе дифференцировки шванновских клеток. В ряде случаев миелин отсутствует; тогда, в отличие от мякотных, говорят о безмякотных нервных волокнах. В последнее время при помощи электронной оптики прослежены особенности развития периферических миелиновых (мякотных) и лишенных миелина (безмякотных) нервных волокон. Первоначально растущий аксон лежит, примыкая к поверхности шванновских клеток, а затем вдавливается в ёё цитоплазму, увлекая за собой поверхностную плазматическую оболочку (мембрану), вследствие чего образуется так называемый мезаксон. Вокруг аксона на участках оболочки шванновской клетки в местах соприкосновения её складок с аксоном синтезируется миелин. В дальнейшем ввернувшиеся поверхности оболочки шванновской клетки начинают обвивать осевой цилиндр, разрастаясь при этом наподобие спирали. Предполагают, что процесс спирального разрастания мембраны сопряжён с вращением шванновской клетки вокруг аксона. В итоге концентрических слоёв миелина становятся так много, что они наполняют шванновскую клетку, цитоплазма которой оказывается зажатой в виде узких полос между ними. По всей своей длине мякотное нервное волокно входит в контакт с чередующимися шванновскими клетками. Через промежутки порядка 1мм миелин прерывается, оставляя открытыми участки мембраны аксона (перехваты Ранвье). В безмякотных нервных волокнах шванновские клетки образуют сплошные синцитиальные тяжи, которые «заселяются» группами аксонов. Миелинизация начинается у человека на 4-м месяце внутриутробной жизни и заканчивается лишь после рождения. В мозговых пузырях процессы протекают аналогичным образом, но с тем существенным отличием, что серое вещество развивается не только средних слоях, но и на поверхности мозговых пузырей, где образуется сложная слоистая кора больших полушарий и мозжечка.

Особую проблему составляет вопрос о причинах ориентации нервных волокон среди тканей развивающегося эмбриона. В том отношении существует несколько теорий. Согласно механической теории, или теории стереотропизма, нейробласты и их отростки распределяются благодаря механическим факторам, связанным с ультраструктурой (стереоструктурой), т.е. мицеллярной ориентацией окружающих тканей. Согласно теории хемотаксиса, или нейротропизма, направление роста аксона определяется особого рода секретом, вырабатываемым в тканях, который притягивает к колбу роста аксона. Согласно теории нейробиотаксиса, распределение нервных волокон в тканях определяется различиями в электрических биопотенциалах между дендритами и аксоном нейробласта. Направление и ориентация растущих нервных волокон наряду с перечисленными внешними факторами определяются также внутренней пространственной цитоплазматической структурой тела и отростков нейробластов. На поздних стадиях дифференцировки нейробласт, как правило, теряет способность делению.

Глия.

Каждая клетка ЦНС окружается протоплазматическими астроцитами с цитоплазмой, содержащей малое количество фибриллярных нитей. Волокна нервных клеток в белом веществе окружены фиброзными астроцитами, в цитоплазме которых присутствует большое количество фибриллярного материала. Фиброзные астроциты заполняют пространство между пучками миелизированных нервных волокон. Эти крупные клетки в составе глии похожи на раскрывшиеся бутоны астр, отсюда и их название – астроциты.

Олигодендроциты родственны астроцитам, но отличаются меньшими размерами и более мелкими ядрами, а так же более слаборазвитыми ветвистыми отростками. Они связаны непосредственно с телами нейронов и нервными волокнами, поэтому их часто рассматривают в качестве центральных гомологов шванновских клеток. Мелкие микроглиальные клетки похожи на паучков.

Они отличаются характером своих отростков и очень небольшими темными ядрами. Эти клетки равномерно рассеяны как в головном, так и спинном мозге.

Таким образом, глия образует очень сложную сеть, состоящею из клеточных тел и отростков. В ячейке этой сети, как в сотах, располагаются нервные клетки и их отростки, пространственно друг от друга. И только в области контактов, т.е. на месте синапсов нервных клеток, имеет место «прорыв» в глиальной прокладке. Нейроглия играет роль опоры и отростков. Скопления нервных клеток с окружающей их глией называются ганглиями. В условиях патологии глия отличается высокой реактивностью и, в отличие от нейронов, способностью к пролиферации (т.е. размножению). Глиальные клетки участвуют как в дегенеративных, так и регенеративных процессах, связанных с травмами, сосудистыми расстройствами или нейроинфекциями. Способность к активной миграции и фагоцитозу особенно отличаются микроглиальные клетки.

Особое место в нервной ткани занимает эпендимный призматический эпителий – нейроэпителий, выстилающий спинномозговой канал и желудочки головного мозга. У эмбрионов и новорожденных он несёт мерцательные реснички.

Что касается крупных сосудов, которые находятся в нервной ткани, то они всём своём протяжении сопровождаются соединительной тканью и покрыты глиальными, образованными астроцитами пограничными мембранами, которые некоторыми исследователями рассматриваются в качестве одного из субстратов гематоэнцефалического барьера, обеспечивающего избирательную проницаемость сосудов мозга. Лимфатические сосуды нервной ткани отсутствуют.

СТРУКТУРА ГЛИАЛЬНЫХ КЛЕТОК.

Глиальные клетки были впервые выделены в определенную группу элементов нервной системы в 1871 г. А.Вирховым, который рассматривал своеобразную соединительную ткань мозга. Назвал эти клетки нейроглией, т.е. нервным клеем.

Выделяют 4 типа глиальных клеток: астроциты, олигодендроциты, клетки эпиндемы и микроглии Первые три разновидности глиальных клеток образуются в эмбриогенезе, как и нейрон из нейроэктодермы, микроглия занимает несколько обособленное положение.

1. Астроцитарная глия – это крупные клетки со светлым овальным ядром, многочисленными отростками небольшим числом органоидов.

2. Олигодендроциты – это глиальные клетки. К ней относятся: олигодендроциты серого и белого вещества мозга, шванновские клетки, клетки-спутники /сателлитная глия/. Характеризуются более плотной цитоплазмой, с хорошо развитым ЭПР, ап. Гольджи, множеством митохондрии, лизосом.

3. Эпендимная глия является разновидностью глиальных клеток. Она образует выстилку полостей мозговых желудочков и центрального канала спинного мозга. Представлена цилиндрическими и кубовидными клетками. Хорошо развиты органоиды клеток.

4. Микроглия это мелкие отростчатые клетки с очень плотной цитоплазмой.

Характерен фагоцитоз. До сих пор окончательно не решен вопрос о происхождении микроглии в эмбриогенезе. С одной стороны ее рассматривают как своеобразные макрофаги, и таким образом, относят к элементам тканей внутренней среды мезенхимного происхождения. С другой стороны имеются данные, позволяющие рассматривать часть микроглии как недифференцированные /покоящееся/ астроциты, которые при определенных условиях начинают активно размножаться и превращаться в зрелые фиброзные астроциты.

Глия выполняет следующие функции.

1. Обеспечивают нормальную деятельность определенных нейронов и всего мозга.

2. Обеспечение надежной элементарной изоляции тел нейронов, их отростков, синапсов для исключение неадекватного взаимодействие между нейронами при распространении возбуждении по нейронным цепям мозга.

3. 3.Астроциты и олигодендроциты обладают способностью активно захватывать из синаптической щели медиаторы или их составные части после прекращение синаптической передачи. В частности, целиком захватывается глией такие медиаторы как КА, аминокислотные пептиды.

4. Трофическая функция глий. В глиальных клетках сосредоточен основной запас гликогене /главного энергетического субстрата мозга/ и липидов. Они контролируют ионный состав межклеточной жидкости, обеспечивает стабильность внутренней среды мозга – необходимое условие нормального функционирования нервной ткани.

Дегенерация и регенерация нервной ткани.

Нейроглия ЦНС, шванновские клетки и глиальные клетки – сателлиты периферической нервной системы, в отличие от нервных клеток, обладают значительными пролиферативными способностями. Это обнаруживается при обнаружении некоторых опухолей, например глиом нервной системы, после ампутационных нервных рубцов, превращений глии в культурах ткани ( Н.Г. Хлопин, 1947). Нейроглия играет важную роль в процессах регенерации периферических и, по-видимому, центральных нервных волокон. Нейроны, как правило, способностью к размножению не обладают. При повреждении тела нервной клетки она обычно погибает и фагоцитируется микроглиальными элементами.

Фагоциты (от лат. Fagos- пожирать) – клетки микроглии, обладающие способностью поглощать погибшие части нейронов. Если повреждается (в результате перетяжки, травмы и пр.) аксон нервной клетки, то в теле соответствующего нейрона наступает ряд характерных изменений. Во– первых, наблюдается хроматолиз, т.е. разрушение и растворение субстанции Ниссля, представляющей собой шероховатую эндоплазматическую сеть со скоплением рибосом в теле нейрона. Одновременно вследствие потери воды размеры тела нервной клетки и её ядра могут уменьшаться, цитоплазма вакуолизируется, ядро занимает краевое положение и меняет форму. Число нейрофибрилл в клетке уменьшается, они делаются тоньше и плохо различимы. Центральный и периферический отрезки перерезанного аксона, его мякотная и безмякотная оболочки претерпевают распад; на некотором расстоянии от места поврежедения миелин растворяется. Все эти картины получили для клеточного тела название “первичной реакции Ниссля”, или ретроградной клеточной дегенерации, а для центрального и периферического отрезка аксона – травматической дегенерации. Особенно сложно протекают изменения в периферическом отрезке перерезанного аксона или, если речь идёт о нерве, в периферическом отрезке нерва. Эти изменения называются вторичной, или валлеровской, дегенерацией нервных волокон. Во время валлеровской дегенерации периферические отрезки аксонов, потерявшие связь с телом нервной клетки, являющейся их трофическим центром, распадаются и полностью дегенерируют. Миелиновая оболочка распадается; миелин собирается в капли, в которых иногда ещё можно проследить обломки периферических аксонов. Шванновские клетки, трофически независимые от тела нервной клетки, начинают активно пролиферировать, образуя своеобразные глиальные тяжи, которые способствуют регенерации (отрастанию) центрального отрезка перерезанного аксона. Шванновские клетки образуют синцитиальные вытянутые ленты, которые получили название «бюнгеровых тяжей» Они растут по направлению к центральным отрезкам. В безмякотных нервах процессы вторичной дегенерации протекают сходным образом.

Фрагменты распавшихся нервных волокон также растворяются шванновскими клетками и фагоцитами. Регенерация обычно начинается на центральных концах отрезанных аксонов, которые образуют утолщения – колбы роста, наподобие тех, которые наблюдаются у нейробластов. Однако электронная оптика показала, что регенерация может происходить и значительно выше новообразованных колб роста путём преобразования коллатералей, отходящих от аксона.

В регенерирующихся шванновских элементах наблюдается повышенная активность ряда ферментов, в т.ч. и окислительных.

Преобразовавшись в пучки усиленно растущих волокон, регенерирующие центральные отрезки аксонов в конце концов проникают в бюнгнеровы тяжи и начинают расти в них, как по готовому руслу, достигая старых периферических нервных чувствительных или двигательных окончаний. Шванновский синцитий распадается на отдельные клетки, в которых появляется миелин с характерными перехватами Ранвье и т.п. Аналогичным путём идёт врастание регенерирующих волокон и в безмякотных нервах, но без образования миелина. Одновременно восстанавливаются и функции регенерировавших нервов.

Pages:     | 1 | 2 || 4 | 5 |   ...   | 17 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.