Pages:     | 1 ||

[16] A.F. Devonshire. Advances in Physics 3, 85 (1954).

[17] L.M. Blinov, V.M. Fridkin, S.P. Palto, A.V. Bune, P.A. Dowben, S. Ducharme. Physics Uspekhi 170, 243 (2000).

[18] F. Jona, G. Shirane. Ferroelectric Crystals. Macmillan, N. Y.


Figure 3. Scaling with thickness of the coercive field, mea[19] P.J. Lock. Appl. Phys. Lett. 19, 390 (1971).

sured at or near at 25C, of ferroelectric vinylidene fluoride[20] G.A. Samara. Ferroelectrics 5, 25 (1973).

trifluoroethylene copolymer films. Adapted from [12].

[21] T. Maruyama, M. Saitoh, I. Sakai, T. Hidaka, Y. Yano, T. Noguchi. Appl. Phys. Lett. 73, 3524 (1998).

[22] M.A. Marcus. Ferroelectrics 40, 29 (1982).

[23] T. Fukukawa. Ferroelectrics 57, 63 (1984).

is inhibited, and polarization reversal depends only on the [24] K. Kimura, H. Ohigashi. Jpn. J. Appl. Phys. 25, 383 (1986).

intrinsic ferroelectric properties. Detailed measurements of [25] S. Palto, L. Blinov, A. Bune, E. Dubovik, V. Fridkin, the temperature dependence of the coercive field confirmed N. Petukhova, K. Verkhovskaya, S. Yudin. Ferro. Lett. 19, the specific predictions of the LG1 model [12] and thus (1995).

established that the intrinsic measurements coincided with [26] A. Bune, S. Ducharme, V.M. Fridkin, L. Blinov, S. Palto, the intrinsic coercive field. Though nucleation and domains N. Petukhova, S. Yudin. Appl. Phys. Lett. 67, 3975 (1995).

[27] S. Palto, L. Blinov, E. Dubovik, V. Fridkin, N. Petukhova, do not limit the value of the coercive field, they should play A. Sorokin, K. Verkhovskaya, S. Yudin, A. Zlatkin. Europhys.

a key role in switching dynamics. Preliminary imaging of Lett. 34, 465 (1996).

the polarization through pyroelectric scanning microscopy [28] L.M. Blinov, V.M. Fridkin, S.P. Palto, A.V. Sorokin, S.G. Yudin.

has not revealed domains larger than the 2 mresolution of Thin Solid Films 284285, 474 (1996).

our current system, but further study is necessary before any [29] S. Ducharme, S.P. Palto, L.M. Blinov, V.M. Fridkin. In:

can be said about domain and crystallite properties.

Proceedings of the Fundamental Physics of Ferroelectrics / It is not clear whether or not the two-dimensional nature Ed. by R. Cohen, K. Rabe. American Institute of Physics, of ferroelectricity in the vinylidene fluoride copolymers Aspen, CO (2000). P. 354.

was essential for this achievement. There may soon be [30] S. Ducharme, A.V. Bune, V.M. Fridkin, L.M. Blinov, S.P. Palto, results bearing on this question as several groups have A.V. Sorokin, S. Yudin. Phys. Rev. B57, 25 (1998).

reported making good films with thickness less than 10 nm [31] A.V. Bune, C. Zhu, S. Ducharme, L.M. Blinov, V.M. Fridkin, S.P. Palto, N.G. Petukhova, S.G. Yudin. J. Appl. Phys. 85, from several known bulk ferroelectric materials [21,3234].


Recent improvements in the quality of solvent-crystallized [32] T. Tybell, C.H. Ahn, J.-M. Triscone. Appl. Phys. Lett. 75, of vinylidene fluoride copolymers should help elucidate (1999).

the effects nucleation and domain-wall motion in bulk [33] E.D. Specht, H.-M. Christen, D.P. Norton, L.A. Boatner. Phys.

crystals [3537].

Rev. Lett. 80, 4317 (1998).

[34] J.F.M. Cillessen, M.W.J. Prins, R.M. Wolf. J. Appl. Phys. 81, 2777 (1997).

References [35] H. Ohigashi, K. Omote, H. Abe, K. Koga. Jpn. J. Appl. Phys.

68, 1824 (1999).

[1] V. Ginzburg. Zh. Eksp. Teor. Fiz. 15, 739 (1945).

[36] H. Ohigashi, K. Omote, T. Gomyo. Appl. Phys. Lett. 66, [2] M.E. Lines, A.M. Glass. Principles and Applications of Fer(1995).

roelectrics and Related Materials. Clarendon, Oxford (1977).

[37] M. Hikosaka, K. Sakurai, H. Ohigashi, T. Koizumi. Jpn. J.

680 p.

Appl. Phys. 32, 2029 (1993).

[3] B.A. Strukov, A.P. Levanuk. Ferroelectric Phenomena in Crystals. Springer Verlag, Berlin (1998).

[4] W.J. Merz. Phys. Rev. 95, 690 (1954).

[5] W.J. Merz. J. Appl. Phys. 27, 938 (1956).

[6] A. M. Bratkovsky, A.P. Levanyuk. Phys. Rev. Lett. 84, (2000).

[7] O. Auciello, J.F. Scott, R. Ramesh. Phys. Today 51, 22 (1998).

, 2001, 43, .

Pages:     | 1 ||

2011 www.dissers.ru -

, .
, , , , 1-2 .